The GNU linker

1d

(Sourcery CodeBench Lite 2011.09-70)
Version 2.21.53

Steve Chamberlain
Ian Lance Taylor

Red Hat Inc

nickc@credhat.com, doc@redhat.com
The GNU linker

Edited by Jeffrey Osier (jeffrey@cygnus.com)

Copyright (©) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and with
no Back-Cover Texts. A copy of the license is included in the section entitled “GNU Free

Documentation License”.

Table of Contents

1 Overviewiiiiii i, 1
2 Invocation................. 3
2.1 Command Line Options........ ..o 3
2.1.1 Options Specific to 1386 PE Targets 29
2.1.2 Options specific to C6X uClinux targets.................. 36
2.1.3 Options specific to Motorola 68HC11 and 68HC12 targets
.. 36
2.1.4 Options specific to Motorola 68K target 36
2.1.5 Options specific to MIPS targets 36
2.2 Environment Variables......... 37
3 Linker Scripts.............. L. 39
3.1 Basic Linker Script Concepts.........coovviiiiiiiiiinna... 39
3.2 Linker Script Format......... i 40
3.3 Simple Linker Script Example............ol 40
3.4 Simple Linker Script Commandscoiiia.... 41
3.4.1 Setting the Entry Point 41
3.4.2 Commands Dealing with Files............ 41
3.4.3 Commands Dealing with Object File Formats............. 43
3.4.4 Assign alias names to memory regions 43
3.4.5 Other Linker Script Commands........................... 46
3.5 Assigning Values to Symbols L. 47
3.5.1 Simple Assignmentsot 47
3.5.2 PROVIDE e 48
3.5.3 PROVIDE_HIDDEN i 48
3.5.4 Source Code Referencecoiiiiiiiii .. 48
3.6 SECTIONS Commandcooiiiiiiiiiiiiiiinnnn... 50
3.6.1 Output Section Description............... ..., 50
3.6.2 Output Section Name 51
3.6.3 Output Section Address...........oouiiiiiiiiiiiann.n. 51
3.6.4 Input Section Descriptioncoiiiiiiieiiie .. 52
3.6.4.1 Input Section Basics............ooiiiiiiiiiii .. 52
3.6.4.2 Input Section Wildcard Patterns..................... 53
3.6.4.3 Input Section for Common Symbols.................. 55
3.6.4.4 Input Section and Garbage Collection................ 55
3.6.4.5 Input Section Example 55
3.6.5 Output Section Data.................. ... 56
3.6.6 Output Section Keywords oot 57
3.6.7 Output Section Discarding, 58
3.6.8 Output Section Attributes.............. ..., 58

3.6.8.1 Output Section Type........coiiiiiiiiiiii.. 58

ii

The GNU linker

3.6.8.2 Output Section LMA 59
3.6.8.3 Forced Output Alignment 60
3.6.8.4 Forced Input Alignment 60
3.6.8.5 Output Section Constraint........................... 60
3.6.8.6 Output Section Regionoooiit. 60
3.6.8.7 Output Section Phdr................................ 60
3.6.8.8 Output Section Fill................... 61

3.6.9 Overlay Description ..., 61
3.7 MEMORY Commandociiiiiiiiiiiiiin... 62
3.8 PHDRS Command........ ..o, 64
3.9 VERSION Commandccoiiiiiiiiiiiieaannn... 66
3.10 Expressions in Linker Scripts............. ... L. 69
3.10.1 Constants. ... 69
3.10.2 Symbolic Constants ..., 69
3.10.3 Symbol Nameso.uuiiiiii i 69
3.10.4 Orphan Sectionso, 70
3.10.5 The Location Counter...............cooiiiiiieiiia... 70
3.10.6 Operators. 72
3.10.7 Evaluation............ .. 72
3.10.8 The Section of an Expression.....................ouun. 73
3.10.9 Builtin Functions 74
3.11 TImplicit Linker Scriptso, 7
Machine Dependent Features................. 79
4.1 1dand the H8/300ot 79
4.2 1d and the Intel 960 Family o it 79
4.3 14 and the Motorola 68HC11 and 68HC12 families............. 80
4.3.1 Linker Relaxation i, 80
4.3.2 Trampoline Generation................ ..., 80
4.4 14 and the ARM family........ i i 80
4.5 14 and HPPA 32-bit ELF Support 83
4.6 14 and the Motorola 68K family.............. 83
4.7 1d and the MIPS family.........o o i 84
4.8 1dand MMIX ... o 84
4.9 Idand MSP430. ... 84
4.10 14 and PowerPC 32-bit ELF Support 85
4.11 14 and PowerPC64 64-bit ELF Support...................... 86
4.12 1d and SPU ELF Support..........coiiiiiiiiiiiiii . 87
4.13 1d’s Support for Various TI COFF Versions.................. 88
4.14 1d and WIN32 (cygwin/mingw)cooviiiiiiiiia.. 88
4.15 1d and Xtensa Processorsccooiiiiiiiiiiiiiin. 95
BFD 97
5.1 How It Works: An Outline of BED 97
5.1.1 Information LosS..........cooiiiiiiiiiiiiiiia 97

5.1.2 The BFD canonical object-file format..................... 98

6 Reporting Bugs 101
6.1 Have You Found a Bug? i 101
6.2 How to Report Bugs..........coo i 101

Appendix A MRI Compatible Script Files .. 105

Appendix B GNU Free Documentation License
... 107

iii

Chapter 1: Overview 1

1 Overview

1d combines a number of object and archive files, relocates their data and ties up symbol
references. Usually the last step in compiling a program is to run 1d.

14 accepts Linker Command Language files written in a superset of AT&T’s Link Editor
Command Language syntax, to provide explicit and total control over the linking process.

This version of 1d uses the general purpose BFD libraries to operate on object files. This
allows 1d to read, combine, and write object files in many different formats—for example,
COFF or a.out. Different formats may be linked together to produce any available kind of
object file. See Chapter 5 [BFD], page 97, for more information.

Aside from its flexibility, the ¢NU linker is more helpful than other linkers in providing
diagnostic information. Many linkers abandon execution immediately upon encountering
an error; whenever possible, 1d continues executing, allowing you to identify other errors
(or, in some cases, to get an output file in spite of the error).

Chapter 2: Invocation 3

2 Invocation

The ¢NU linker 1d is meant to cover a broad range of situations, and to be as compatible
as possible with other linkers. As a result, you have many choices to control its behavior.

2.1 Command Line Options

The linker supports a plethora of command-line options, but in actual practice few of them
are used in any particular context. For instance, a frequent use of 14 is to link standard
Unix object files on a standard, supported Unix system. On such a system, to link a file
hello.o:

1d -o output /lib/crt0.o hello.o -lc

This tells 1d to produce a file called output as the result of linking the file /1ib/crt0.0
with hello.o and the library libc.a, which will come from the standard search directories.
(See the discussion of the ‘-1’ option below.)

Some of the command-line options to 1d may be specified at any point in the command
line. However, options which refer to files, such as ‘-1’ or ‘=T’, cause the file to be read at
the point at which the option appears in the command line, relative to the object files and
other file options. Repeating non-file options with a different argument will either have no
further effect, or override prior occurrences (those further to the left on the command line)
of that option. Options which may be meaningfully specified more than once are noted in
the descriptions below.

Non-option arguments are object files or archives which are to be linked together. They
may follow, precede, or be mixed in with command-line options, except that an object file
argument may not be placed between an option and its argument.

Usually the linker is invoked with at least one object file, but you can specify other forms
of binary input files using ‘-1’, ‘-R’, and the script command language. If no binary input
files at all are specified, the linker does not produce any output, and issues the message ‘No
input files’.

If the linker cannot recognize the format of an object file, it will assume that it is a linker
script. A script specified in this way augments the main linker script used for the link
(either the default linker script or the one specified by using ‘-T"). This feature permits the
linker to link against a file which appears to be an object or an archive, but actually merely
defines some symbol values, or uses INPUT or GROUP to load other objects. Specifying a
script in this way merely augments the main linker script, with the extra commands placed
after the main script; use the ‘-T’ option to replace the default linker script entirely, but
note the effect of the INSERT command. See Chapter 3 [Scripts], page 39.

For options whose names are a single letter, option arguments must either follow the op-
tion letter without intervening whitespace, or be given as separate arguments immediately
following the option that requires them.

For options whose names are multiple letters, either one dash or two can precede the option
name; for example, ‘~trace-symbol’ and ‘--trace-symbol’ are equivalent. Note—there is
one exception to this rule. Multiple letter options that start with a lower case 'o’ can only
be preceded by two dashes. This is to reduce confusion with the ‘-0’ option. So for example
‘~omagic’ sets the output file name to ‘magic’ whereas ‘~-omagic’ sets the NMAGIC flag
on the output.

4 The GNU linker

Arguments to multiple-letter options must either be separated from the option name by
an equals sign, or be given as separate arguments immediately following the option that
requires them. For example, ‘-—trace-symbol foo’ and ‘--trace-symbol=foo’ are equiv-
alent. Unique abbreviations of the names of multiple-letter options are accepted.

Note—if the linker is being invoked indirectly, via a compiler driver (e.g. ‘gcc’) then all the
linker command line options should be prefixed by ‘-W1,’ (or whatever is appropriate for
the particular compiler driver) like this:

gcc -Wl,--start-group foo.o bar.o -Wl,--end-group
This is important, because otherwise the compiler driver program may silently drop the
linker options, resulting in a bad link. Confusion may also arise when passing options that
require values through a driver, as the use of a space between option and argument acts as
a separator, and causes the driver to pass only the option to the linker and the argument
to the compiler. In this case, it is simplest to use the joined forms of both single- and
multiple-letter options, such as:

gcc foo.o bar.o -W1l,-eENTRY -Wl,-Map=a.map

Here is a table of the generic command line switches accepted by the GNU linker:

Q@file Read command-line options from file. The options read are inserted in place
of the original @file option. If file does not exist, or cannot be read, then the
option will be treated literally, and not removed.

Options in file are separated by whitespace. A whitespace character may be
included in an option by surrounding the entire option in either single or double
quotes. Any character (including a backslash) may be included by prefixing the
character to be included with a backslash. The file may itself contain additional
@file options; any such options will be processed recursively.

-a keyword
This option is supported for HP/UX compatibility. The keyword argument
must be one of the strings ‘archive’, ‘shared’, or ‘default’. ‘-aarchive’ is
functionally equivalent to ‘-Bstatic’, and the other two keywords are func-
tionally equivalent to ‘-Bdynamic’. This option may be used any number of
times.

-—audit AUDITLIB

Adds AUDITLIB to the DT_AUDIT entry of the dynamic section. AUDITLIB
is not checked for existence, nor will it use the DT_SONAME specified in the
library. If specified multiple times DT_AUDIT will contain a colon separated list
of audit interfaces to use. If the linker finds an object with an audit entry while
searching for shared libraries, it will add a corresponding DT_DEPAUDIT entry
in the output file. This option is only meaningful on ELF platforms supporting
the rtld-audit interface.

-A architecture

—-—architecture=architecture
In the current release of 1d, this option is useful only for the Intel 960 family
of architectures. In that 1d configuration, the architecture argument identifies
the particular architecture in the 960 family, enabling some safeguards and
modifying the archive-library search path. See Section 4.2 [1d and the Intel 960
family], page 79, for details.

Chapter 2: Invocation 5)

Future releases of 1d may support similar functionality for other architecture
families.

-b input-format
--format=input-format

1d may be configured to support more than one kind of object file. If your 1d is
configured this way, you can use the ‘~=b’ option to specify the binary format for
input object files that follow this option on the command line. Even when 1d
is configured to support alternative object formats, you don’t usually need to
specify this, as 1d should be configured to expect as a default input format the
most usual format on each machine. input-format is a text string, the name of
a particular format supported by the BFD libraries. (You can list the available
binary formats with ‘objdump -i’.) See Chapter 5 [BFD], page 97.

You may want to use this option if you are linking files with an unusual binary
format. You can also use ‘-b’ to switch formats explicitly (when linking object
files of different formats), by including ‘-b input-format’ before each group of
object files in a particular format.

The default format is taken from the environment variable GNUTARGET. See
Section 2.2 [Environment], page 37. You can also define the input format from
a script, using the command TARGET; see Section 3.4.3 [Format Commands],
page 43.

—-c MRI-commandfile
--mri-script=MRI-commandfile

For compatibility with linkers produced by MRI, 1d accepts script files written
in an alternate, restricted command language, described in Appendix A [MRI
Compatible Script Files], page 105. Introduce MRI script files with the option
‘=¢’; use the ‘-T’ option to run linker scripts written in the general-purpose
1d scripting language. If MRI-cmdfile does not exist, 1d looks for it in the

directories specified by any ‘-L’ options.

These three options are equivalent; multiple forms are supported for compati-
bility with other linkers. They assign space to common symbols even if a relo-
catable output file is specified (with ‘-r’). The script command FORCE_COMMON _
ALLOCATION has the same effect. See Section 3.4.5 [Miscellaneous Commands],
page 46.

—--depaudit AUDITLIB
-P AUDITLIB

Adds AUDITLIB to the DT_DEPAUDIT entry of the dynamic section. AUDITLIB
is not checked for existence, nor will it use the DT_SONAME specified in the
library. If specified multiple times DT_DEPAUDIT will contain a colon separated
list of audit interfaces to use. This option is only meaningful on ELF plat-
forms supporting the rtld-audit interface. The -P option is provided for Solaris
compatibility.

6 The GNU linker

-e entry

-—entry=entry
Use entry as the explicit symbol for beginning execution of your program, rather
than the default entry point. If there is no symbol named entry, the linker will
try to parse entry as a number, and use that as the entry address (the number
will be interpreted in base 10; you may use a leading ‘0x’ for base 16, or a
leading ‘0’ for base 8). See Section 3.4.1 [Entry Point], page 41, for a discussion
of defaults and other ways of specifying the entry point.

-—exclude-1libs 1ib,1ib,...

Specifies a list of archive libraries from which symbols should not be automat-
ically exported. The library names may be delimited by commas or colons.
Specifying —--exclude-1libs ALL excludes symbols in all archive libraries from
automatic export. This option is available only for the 1386 PE targeted port of
the linker and for ELF targeted ports. For i386 PE, symbols explicitly listed in
a .def file are still exported, regardless of this option. For ELF targeted ports,
symbols affected by this option will be treated as hidden.

--exclude-modules-for-implib module,module,. ..

Specifies a list of object files or archive members, from which symbols should
not be automatically exported, but which should be copied wholesale into the
import library being generated during the link. The module names may be
delimited by commas or colons, and must match exactly the filenames used by
1d to open the files; for archive members, this is simply the member name, but
for object files the name listed must include and match precisely any path used
to specify the input file on the linker’s command-line. This option is available
only for the 1386 PE targeted port of the linker. Symbols explicitly listed in a
.def file are still exported, regardless of this option.

-E

—--export-dynamic

--no-export-dynamic
When creating a dynamically linked executable, using the ‘~E’ option or the
‘-—export-dynamic’ option causes the linker to add all symbols to the dynamic
symbol table. The dynamic symbol table is the set of symbols which are visible
from dynamic objects at run time.

4

If you do not use either of these options (or use the ‘--no-export-dynamic’
option to restore the default behavior), the dynamic symbol table will nor-
mally contain only those symbols which are referenced by some dynamic object
mentioned in the link.

If you use dlopen to load a dynamic object which needs to refer back to the
symbols defined by the program, rather than some other dynamic object, then
you will probably need to use this option when linking the program itself.

You can also use the dynamic list to control what symbols should be added to
the dynamic symbol table if the output format supports it. See the description
of ‘~-dynamic-list’.

Chapter 2: Invocation 7

-EB
-EL

-f name

Note that this option is specific to ELF targeted ports. PE targets support a
similar function to export all symbols from a DLL or EXE; see the description
of ‘~-export-all-symbols’ below.

Link big-endian objects. This affects the default output format.
Link little-endian objects. This affects the default output format.

--auxiliary=name

-F name

When creating an ELF shared object, set the internal DT_AUXILIARY field
to the specified name. This tells the dynamic linker that the symbol table of
the shared object should be used as an auxiliary filter on the symbol table of
the shared object name.

If you later link a program against this filter object, then, when you run the
program, the dynamic linker will see the DT_AUXILIARY field. If the dynamic
linker resolves any symbols from the filter object, it will first check whether there
is a definition in the shared object name. If there is one, it will be used instead of
the definition in the filter object. The shared object name need not exist. Thus
the shared object name may be used to provide an alternative implementation
of certain functions, perhaps for debugging or for machine specific performance.

This option may be specified more than once. The DT_AUXILIARY entries
will be created in the order in which they appear on the command line.

—-—-filter=name

—-fini=name

g

When creating an ELF shared object, set the internal DT_FILTER field to
the specified name. This tells the dynamic linker that the symbol table of the
shared object which is being created should be used as a filter on the symbol
table of the shared object name.

If you later link a program against this filter object, then, when you run the
program, the dynamic linker will see the DT_FILTER field. The dynamic linker
will resolve symbols according to the symbol table of the filter object as usual,
but it will actually link to the definitions found in the shared object name.
Thus the filter object can be used to select a subset of the symbols provided by
the object name.

Some older linkers used the ‘~F’ option throughout a compilation toolchain for
specifying object-file format for both input and output object files. The GNU
linker uses other mechanisms for this purpose: the ‘-b’, ‘-=format’, ‘-—oformat’
options, the TARGET command in linker scripts, and the GNUTARGET environment
variable. The GNU linker will ignore the ‘~F’ option when not creating an ELF
shared object.

When creating an ELF executable or shared object, call NAME when the exe-
cutable or shared object is unloaded, by setting DT_FINI to the address of the
function. By default, the linker uses _fini as the function to call.

Ignored. Provided for compatibility with other tools.

-G value

The GNU linker

--gpsize=value

-h name

Set the maximum size of objects to be optimized using the GP register to size.
This is only meaningful for object file formats such as MIPS ECOFF which
supports putting large and small objects into different sections. This is ignored
for other object file formats.

—Soname=name

-i

-init=name

When creating an ELF shared object, set the internal DT_SONAME field to the
specified name. When an executable is linked with a shared object which has
a DT_SONAME field, then when the executable is run the dynamic linker will
attempt to load the shared object specified by the DT_SONAME field rather
than the using the file name given to the linker.

Perform an incremental link (same as option ‘-r’).
When creating an ELF executable or shared object, call NAME when the ex-

ecutable or shared object is loaded, by setting DT_INIT to the address of the
function. By default, the linker uses _init as the function to call.

-1 namespec
--library=namespec

Add the archive or object file specified by namespec to the list of files to link.
This option may be used any number of times. If namespec is of the form
‘:filename’, 1d will search the library path for a file called filename, otherwise
it will search the library path for a file called ‘libnamespec.a’.

On systems which support shared libraries, 1d may also search for files other
than ‘libnamespec.a’. Specifically, on ELF and SunOS systems, 1d will search
a directory for a library called ‘libnamespec.so’ before searching for one called
‘libnamespec.a’. (By convention, a .so extension indicates a shared library.)
Note that this behavior does not apply to ‘:filename’, which always specifies
a file called filename.

The linker will search an archive only once, at the location where it is specified
on the command line. If the archive defines a symbol which was undefined in
some object which appeared before the archive on the command line, the linker
will include the appropriate file(s) from the archive. However, an undefined
symbol in an object appearing later on the command line will not cause the
linker to search the archive again.

See the ‘- option for a way to force the linker to search archives multiple
times.

You may list the same archive multiple times on the command line.

This type of archive searching is standard for Unix linkers. However, if you are
using 1d on AIX, note that it is different from the behaviour of the AIX linker.

Chapter 2: Invocation 9

-L searchdir

--library-path=searchdir
Add path searchdir to the list of paths that 1d will search for archive libraries
and 1d control scripts. You may use this option any number of times. The
directories are searched in the order in which they are specified on the command
line. Directories specified on the command line are searched before the default
directories. All ‘-L’ options apply to all ‘-1’ options, regardless of the order
in which the options appear. ‘-L’ options do not affect how 1d searches for a
linker script unless ‘-T’ option is specified.

If searchdir begins with =, then the = will be replaced by the sysroot prefix, a
path specified when the linker is configured.

The default set of paths searched (without being specified with ‘-L’) depends
on which emulation mode 1d is using, and in some cases also on how it was
configured. See Section 2.2 [Environment], page 37.

The paths can also be specified in a link script with the SEARCH_DIR command.

Directories specified this way are searched at the point in which the linker script
appears in the command line.

-m emulation
Emulate the emulation linker. You can list the available emulations with the
‘--verbose’ or ‘-V’ options.
If the ‘-m’ option is not used, the emulation is taken from the LDEMULATION
environment variable, if that is defined.

Otherwise, the default emulation depends upon how the linker was configured.

-M

—--print-map
Print a link map to the standard output. A link map provides information
about the link, including the following:

e Where object files are mapped into memory.
e How common symbols are allocated.

e All archive members included in the link, with a mention of the symbol
which caused the archive member to be brought in.

e The values assigned to symbols.

Note - symbols whose values are computed by an expression which involves
a reference to a previous value of the same symbol may not have correct
result displayed in the link map. This is because the linker discards inter-
mediate results and only retains the final value of an expression. Under
such circumstances the linker will display the final value enclosed by square
brackets. Thus for example a linker script containing:

foo =1
foo = foo * 4
foo = foo + 8

will produce the following output in the link map if the ‘-M’ option is used:

0x00000001 foo = 0Ox1
[0x0000000c] foo = (foo * 0x4)

10

-n
--nmagic

-N
—--omagic

The GNU linker

[0x0000000c] foo = (foo + 0x8)

See Section 3.10 [Expressions|, page 69 for more information about expres-
sions in linker scripts.

Turn off page alignment of sections, and disable linking against shared libraries.
If the output format supports Unix style magic numbers, mark the output as
NMAGIC.

Set the text and data sections to be readable and writable. Also, do not page-
align the data segment, and disable linking against shared libraries. If the
output format supports Unix style magic numbers, mark the output as OMAGIC.
Note: Although a writable text section is allowed for PE-COFF targets, it does
not conform to the format specification published by Microsoft.

—--no-omagic

-0 output

This option negates most of the effects of the ‘-N’ option. It sets the text section
to be read-only, and forces the data segment to be page-aligned. Note - this
option does not enable linking against shared libraries. Use ‘~Bdynamic’ for
this.

—--output=output

-0 level

-q

Use output as the name for the program produced by 1d; if this option is not
specified, the name ‘a.out’ is used by default. The script command OUTPUT
can also specify the output file name.

If level is a numeric values greater than zero 1d optimizes the output. This
might take significantly longer and therefore probably should only be enabled
for the final binary. At the moment this option only affects ELF shared library
generation. Future releases of the linker may make more use of this option. Also
currently there is no difference in the linker’s behaviour for different non-zero
values of this option. Again this may change with future releases.

—-—emit-relocs

Leave relocation sections and contents in fully linked executables. Post link
analysis and optimization tools may need this information in order to perform
correct modifications of executables. This results in larger executables.

This option is currently only supported on ELF platforms.

—--force-dynamic

-r

Force the output file to have dynamic sections. This option is specific to Vx-
Works targets.

—--relocatable

Generate relocatable output—i.e., generate an output file that can in turn serve
as input to 1d. This is often called partial linking. As a side effect, in envi-
ronments that support standard Unix magic numbers, this option also sets the

Chapter 2: Invocation 11

output file’s magic number to OMAGIC. If this option is not specified, an abso-
lute file is produced. When linking C++ programs, this option will not resolve
references to constructors; to do that, use ‘-Ur’.

When an input file does not have the same format as the output file, partial
linking is only supported if that input file does not contain any relocations.
Different output formats can have further restrictions; for example some a. out-
based formats do not support partial linking with input files in other formats
at all.

This option does the same thing as ‘-i’.

-R filename

--just-symbols=filename
Read symbol names and their addresses from filename, but do not relocate it
or include it in the output. This allows your output file to refer symbolically
to absolute locations of memory defined in other programs. You may use this
option more than once.

For compatibility with other ELF linkers, if the ‘R’ option is followed by a
directory name, rather than a file name, it is treated as the ‘-rpath’ option.

-s
--strip-all
Omit all symbol information from the output file.

-S
--strip-debug
Omit debugger symbol information (but not all symbols) from the output file.

-t
--trace Print the names of the input files as 1d processes them.

-T scriptfile

--script=scriptfile
Use scriptfile as the linker script. This script replaces 1d’s default linker script
(rather than adding to it), so commandfile must specify everything necessary
to describe the output file. See Chapter 3 [Scripts|, page 39. If scriptfile does
not exist in the current directory, 1d looks for it in the directories specified by
any preceding ‘-L’ options. Multiple ‘-T” options accumulate.

-dT scriptfile
--default-script=scriptfile
Use scriptfile as the default linker script. See Chapter 3 [Scripts|, page 39.

This option is similar to the ‘~-script’ option except that processing of the
script is delayed until after the rest of the command line has been processed.
This allows options placed after the ‘--default-script’ option on the com-
mand line to affect the behaviour of the linker script, which can be important
when the linker command line cannot be directly controlled by the user. (eg
because the command line is being constructed by another tool, such as ‘gcc’).

12

-u symbol

The GNU linker

-—undefined=symbol

-Ur

--unique[=

-V
—--version
-V

-X

—-discard-

-X

——-discard-

-y symbol

Force symbol to be entered in the output file as an undefined symbol. Do-
ing this may, for example, trigger linking of additional modules from standard
libraries. ‘-—u’ may be repeated with different option arguments to enter addi-
tional undefined symbols. This option is equivalent to the EXTERN linker script
command.

For anything other than C++ programs, this option is equivalent to ‘-r’: it gen-
erates relocatable output—i.e., an output file that can in turn serve as input to
1d. When linking C++ programs, ‘~Ur’ does resolve references to constructors,
unlike ‘-r’. It does not work to use ‘-Ur’ on files that were themselves linked
with ‘-Ur’; once the constructor table has been built, it cannot be added to.
Use ‘=Ur’ only for the last partial link, and ‘-r’ for the others.

SECTION]

Creates a separate output section for every input section matching SECTION,
or if the optional wildcard SECTION argument is missing, for every orphan
input section. An orphan section is one not specifically mentioned in a linker
script. You may use this option multiple times on the command line; It prevents
the normal merging of input sections with the same name, overriding output
section assignments in a linker script.

Display the version number for 1d. The -V’ option also lists the supported
emulations.

all
Delete all local symbols.

locals

Delete all temporary local symbols. (These symbols start with system-specific
local label prefixes, typically ‘.L’ for ELF systems or ‘L’ for traditional a.out
systems.)

-—trace-symbol=symbol

-Y path

-z keyword

Print the name of each linked file in which symbol appears. This option may
be given any number of times. On many systems it is necessary to prepend an
underscore.

This option is useful when you have an undefined symbol in your link but don’t
know where the reference is coming from.

Add path to the default library search path. This option exists for Solaris
compatibility.

The recognized keywords are:

Chapter 2: Invocation 13

‘combreloc’
Combines multiple reloc sections and sorts them to make dynamic
symbol lookup caching possible.

‘defs’ Disallows undefined symbols in object files. Undefined symbols in
shared libraries are still allowed.

‘execstack’
Marks the object as requiring executable stack.

‘initfirst’
This option is only meaningful when building a shared object. It
marks the object so that its runtime initialization will occur before
the runtime initialization of any other objects brought into the
process at the same time. Similarly the runtime finalization of the
object will occur after the runtime finalization of any other objects.

‘interpose’
Marks the object that its symbol table interposes before all symbols
but the primary executable.

‘lazy’ When generating an executable or shared library, mark it to tell the
dynamic linker to defer function call resolution to the point when
the function is called (lazy binding), rather than at load time. Lazy
binding is the default.

‘loadfltr’
Marks the object that its filters be processed immediately at run-
time.

‘muldefs’ Allows multiple definitions.

‘nocombreloc’
Disables multiple reloc sections combining.

‘nocopyreloc’
Disables production of copy relocs.

‘nodefaultlib’
Marks the object that the search for dependencies of this object
will ignore any default library search paths.

‘nodelete’
Marks the object shouldn’t be unloaded at runtime.

‘nodlopen’
Marks the object not available to dlopen.

‘nodump’ Marks the object can not be dumped by dldump.

‘noexecstack’
Marks the object as not requiring executable stack.

‘norelro’ Don’t create an ELF PT_GNU_RELRO segment header in the object.

14

The GNU linker

now When generating an executable or shared library, mark it to tell the
dynamic linker to resolve all symbols when the program is started,
or when the shared library is linked to using dlopen, instead of
deferring function call resolution to the point when the function is
first called.

‘origin’ Marks the object may contain $ORIGIN.
‘relro’ Create an ELF PT_GNU_RELRO segment header in the object.

‘max-page-size=value’
Set the emulation maximum page size to value.

‘common-page-size=value’
Set the emulation common page size to value.

Other keywords are ignored for Solaris compatibility.

-(archives -)
--start-group archives —--end-group

The archives should be a list of archive files. They may be either explicit file
names, or ‘-1’ options.

The specified archives are searched repeatedly until no new undefined references
are created. Normally, an archive is searched only once in the order that it is
specified on the command line. If a symbol in that archive is needed to resolve
an undefined symbol referred to by an object in an archive that appears later
on the command line, the linker would not be able to resolve that reference.
By grouping the archives, they all be searched repeatedly until all possible
references are resolved.

Using this option has a significant performance cost. It is best to use it only
when there are unavoidable circular references between two or more archives.

--accept-unknown-input-arch
--no-accept-unknown-input-arch

Tells the linker to accept input files whose architecture cannot be recognised.
The assumption is that the user knows what they are doing and deliberately
wants to link in these unknown input files. This was the default behaviour of
the linker, before release 2.14. The default behaviour from release 2.14 onwards
is to reject such input files, and so the ‘--—accept-unknown-input-arch’ option
has been added to restore the old behaviour.

—--as—needed
—--no—-as—-needed

This option affects ELF DT_NEEDED tags for dynamic libraries mentioned
on the command line after the ‘~-as-needed’ option. Normally the linker will
add a DT_NEEDED tag for each dynamic library mentioned on the command
line, regardless of whether the library is actually needed or not. ‘--as-needed’
causes a DT_NEEDED tag to only be emitted for a library that satisfies an
undefined symbol reference from a regular object file or, if the library is not
found in the DT_NEEDED lists of other libraries linked up to that point, an
undefined symbol reference from another dynamic library. ‘--no-as-needed’
restores the default behaviour.

Chapter 2: Invocation 15

-—add-needed

--no-add-needed
These two options have been deprecated because of the similarity of their names
to the ‘-—as-needed’ and ‘--no-as-needed’ options. They have been replaced
by ‘~-copy-dt-needed-entries’ and ‘--no-copy-dt-needed-entries’.

-assert keyword
This option is ignored for SunOS compatibility.

-Bdynamic

_dy

-call_shared
Link against dynamic libraries. This is only meaningful on platforms for which
shared libraries are supported. This option is normally the default on such
platforms. The different variants of this option are for compatibility with vari-
ous systems. You may use this option multiple times on the command line: it
affects library searching for ‘-1’ options which follow it.

-Bgroup Set the DF_1_GROUP flag in the DT_FLAGS_1 entry in the dynamic section. This
causes the runtime linker to handle lookups in this object and its dependencies
to be performed only inside the group. ‘--unresolved-symbols=report-all’
is implied. This option is only meaningful on ELF platforms which support
shared libraries.

-Bstatic

—-dn

-non_shared

-static Do not link against shared libraries. This is only meaningful on platforms
for which shared libraries are supported. The different variants of this option
are for compatibility with various systems. You may use this option multiple
times on the command line: it affects library searching for ‘-1’ options which
follow it. This option also implies ‘-—unresolved-symbols=report-all’. This
option can be used with ‘-shared’. Doing so means that a shared library is
being created but that all of the library’s external references must be resolved
by pulling in entries from static libraries.

-Bsymbolic
When creating a shared library, bind references to global symbols to the defi-
nition within the shared library, if any. Normally, it is possible for a program
linked against a shared library to override the definition within the shared li-
brary. This option is only meaningful on ELF platforms which support shared
libraries.

-Bsymbolic-functions
When creating a shared library, bind references to global function symbols to
the definition within the shared library, if any. This option is only meaningful
on ELF platforms which support shared libraries.

—-—dynamic-list=dynamic-list-file
Specify the name of a dynamic list file to the linker. This is typically used when
creating shared libraries to specify a list of global symbols whose references

16

The GNU linker

shouldn’t be bound to the definition within the shared library, or creating dy-
namically linked executables to specify a list of symbols which should be added
to the symbol table in the executable. This option is only meaningful on ELF
platforms which support shared libraries.

The format of the dynamic list is the same as the version node without scope
and node name. See Section 3.9 [VERSION], page 66 for more information.

--dynamic-list-data

Include all global data symbols to the dynamic list.

--dynamic-list-cpp-new

Provide the builtin dynamic list for C++ operator new and delete. It is mainly
useful for building shared libstdc++.

--dynamic-list-cpp-typeinfo

Provide the builtin dynamic list for C++ runtime type identification.

—-check-sections
—--no-check-sections

Asks the linker not to check section addresses after they have been assigned to
see if there are any overlaps. Normally the linker will perform this check, and
if it finds any overlaps it will produce suitable error messages. The linker does
know about, and does make allowances for sections in overlays. The default be-
haviour can be restored by using the command line switch ‘--check-sections’.
Section overlap is not usually checked for relocatable links. You can force check-
ing in that case by using the ‘~-check-sections’ option.

--copy-dt-needed-entries
--no-copy-dt-needed-entries

—--cref

This option affects the treatment of dynamic libraries referred to by
DT_NEEDED tags inside ELF dynamic libraries mentioned on the command
line. Normally the linker won’t add a DT_NEEDED tag to the output binary
for each library mentioned in a DT_NEEDED tag in an input dynamic library.
With ‘--copy-dt-needed-entries’ specified on the command line however
any dynamic libraries that follow it will have their DT_NEEDED entries added.
The default behaviour can be restored with ‘--no-copy-dt-needed-entries’.

This option also has an effect on the resolution of symbols in dynamic libraries.
With ‘--copy-dt-needed-entries’ dynamic libraries mentioned on the com-
mand line will be recursively searched, following their DT_NEEDED tags to
other libraries, in order to resolve symbols required by the output binary. With
the default setting however the searching of dynamic libraries that follow it will
stop with the dynamic library itself. No DT_NEEDED links will be traversed
to resolve symbols.

Output a cross reference table. If a linker map file is being generated, the
cross reference table is printed to the map file. Otherwise, it is printed on the
standard output.

The format of the table is intentionally simple, so that it may be easily processed
by a script if necessary. The symbols are printed out, sorted by name. For each
symbol, a list of file names is given. If the symbol is defined, the first file listed

Chapter 2: Invocation 17

is the location of the definition. The remaining files contain references to the
symbol.

--no-define-common

This option inhibits the assignment of addresses to common symbols. The script
command INHIBIT_COMMON_ALLOCATION has the same effect. See Section 3.4.5
[Miscellaneous Commands|, page 46.

The ‘--no-define-common’ option allows decoupling the decision to assign ad-
dresses to Common symbols from the choice of the output file type; otherwise
a non-Relocatable output type forces assigning addresses to Common symbols.
Using ‘--no-define-common’ allows Common symbols that are referenced from
a shared library to be assigned addresses only in the main program. This elim-
inates the unused duplicate space in the shared library, and also prevents any
possible confusion over resolving to the wrong duplicate when there are many
dynamic modules with specialized search paths for runtime symbol resolution.

--defsym=symbol=expression

Create a global symbol in the output file, containing the absolute address given
by expression. You may use this option as many times as necessary to define
multiple symbols in the command line. A limited form of arithmetic is sup-
ported for the expression in this context: you may give a hexadecimal constant
or the name of an existing symbol, or use + and - to add or subtract hexadec-
imal constants or symbols. If you need more elaborate expressions, consider
using the linker command language from a script (see Section 3.5 [Assignment:
Symbol Definitions|, page 47). Note: there should be no white space between
symbol, the equals sign (“="), and expression.

—--demangle [=stylel
--no-demangle

-Ifile

These options control whether to demangle symbol names in error messages and
other output. When the linker is told to demangle, it tries to present symbol
names in a readable fashion: it strips leading underscores if they are used by
the object file format, and converts C++ mangled symbol names into user read-
able names. Different compilers have different mangling styles. The optional
demangling style argument can be used to choose an appropriate demangling
style for your compiler. The linker will demangle by default unless the envi-
ronment variable ‘COLLECT_NO_DEMANGLE’ is set. These options may be used to
override the default.

—--dynamic-linker=file

Set the name of the dynamic linker. This is only meaningful when generating
dynamically linked ELF executables. The default dynamic linker is normally
correct; don’t use this unless you know what you are doing.

--fatal-warnings
--no-fatal-warnings

Treat all warnings as errors. The default behaviour can be restored with the
option ‘--no-fatal-warnings’.

18 The GNU linker

--force-exe-suffix
Make sure that an output file has a .exe suffix.

If a successfully built fully linked output file does not have a .exe or .d11 suffix,
this option forces the linker to copy the output file to one of the same name
with a .exe suffix. This option is useful when using unmodified Unix makefiles
on a Microsoft Windows host, since some versions of Windows won’t run an
image unless it ends in a .exe suffix.

--gc-sections

--no-gc-sections
Enable garbage collection of unused input sections. It is ignored on targets
that do not support this option. The default behaviour (of not performing this
garbage collection) can be restored by specifying ‘--no-gc-sections’ on the
command line.

‘-—gc-sections’ decides which input sections are used by examining symbols
and relocations. The section containing the entry symbol and all sections con-
taining symbols undefined on the command-line will be kept, as will sections
containing symbols referenced by dynamic objects. Note that when building
shared libraries, the linker must assume that any visible symbol is referenced.
Once this initial set of sections has been determined, the linker recursively
marks as used any section referenced by their relocations. See ‘--entry’ and
‘-—undefined’.

This option can be set when doing a partial link (enabled with option ‘-r’).
In this case the root of symbols kept must be explicitly specified either by an
‘-—entry’ or ‘-—undefined’ option or by a ENTRY command in the linker script.

--print-gc-sections

--no-print-gc-sections
List all sections removed by garbage collection. The listing is printed on stderr.
This option is only effective if garbage collection has been enabled via the
‘~-gc-sections’) option. The default behaviour (of not listing the sections
that are removed) can be restored by specifying ‘--no-print-gc-sections’ on
the command line.

--print-output-format
Print the name of the default output format (perhaps influenced by other
command-line options). This is the string that would appear in an OUTPUT_
FORMAT linker script command (see Section 3.4.2 [File Commands], page 41).

--help Print a summary of the command-line options on the standard output and exit.

--target-help
Print a summary of all target specific options on the standard output and exit.

-Map=mapfile
Print a link map to the file mapfile. See the description of the ‘-M’ option,
above.

--no-keep-memory
1d normally optimizes for speed over memory usage by caching the symbol
tables of input files in memory. This option tells 1d to instead optimize for

Chapter 2: Invocation 19

memory usage, by rereading the symbol tables as necessary. This may be
required if 1d runs out of memory space while linking a large executable.

--no-undefined

-z defs Report unresolved symbol references from regular object files. This is done
even if the linker is creating a non-symbolic shared library. The switch
‘--[no-Jallow-shlib-undefined’ controls the behaviour for reporting
unresolved references found in shared libraries being linked in.

--allow-multiple-definition

-z muldefs
Normally when a symbol is defined multiple times, the linker will report a fatal
error. These options allow multiple definitions and the first definition will be
used.

--allow-shlib-undefined

-—-no-allow-shlib-undefined
Allows or disallows undefined symbols in shared libraries. This switch is similar
to ‘--no-undefined’ except that it determines the behaviour when the unde-
fined symbols are in a shared library rather than a regular object file. It does
not affect how undefined symbols in regular object files are handled.

The default behaviour is to report errors for any undefined symbols referenced
in shared libraries if the linker is being used to create an executable, but to
allow them if the linker is being used to create a shared library.

The reasons for allowing undefined symbol references in shared libraries speci-
fied at link time are that:

e A shared library specified at link time may not be the same as the one
that is available at load time, so the symbol might actually be resolvable
at load time.

e There are some operating systems, eg BeOS and HPPA, where undefined
symbols in shared libraries are normal.
The BeOS kernel for example patches shared libraries at load time to select
whichever function is most appropriate for the current architecture. This is
used, for example, to dynamically select an appropriate memset function.

--no-undefined-version
Normally when a symbol has an undefined version, the linker will ignore it.
This option disallows symbols with undefined version and a fatal error will be
issued instead.

--default-symver
Create and use a default symbol version (the soname) for unversioned exported
symbols.

--default-imported-symver
Create and use a default symbol version (the soname) for unversioned imported
symbols.

--no-warn-mismatch
Normally 1d will give an error if you try to link together input files that are
mismatched for some reason, perhaps because they have been compiled for

20

—-no-warn-

The GNU linker

different processors or for different endiannesses. This option tells 1d that it
should silently permit such possible errors. This option should only be used
with care, in cases when you have taken some special action that ensures that
the linker errors are inappropriate.

search-mismatch
Normally 14 will give a warning if it finds an incompatible library during a
library search. This option silences the warning.

—--no-whole-archive

Turn off the effect of the ‘--whole-archive’ option for subsequent archive files.

—--noinhibit-exec

-nostdlib

—--oformat=

-pie

Retain the executable output file whenever it is still usable. Normally, the linker
will not produce an output file if it encounters errors during the link process;
it exits without writing an output file when it issues any error whatsoever.

Only search library directories explicitly specified on the command line. Library
directories specified in linker scripts (including linker scripts specified on the
command line) are ignored.

output-format

1d may be configured to support more than one kind of object file. If your
1d is configured this way, you can use the ‘--oformat’ option to specify the
binary format for the output object file. Even when 1d is configured to support
alternative object formats, you don’t usually need to specify this, as 1d should
be configured to produce as a default output format the most usual format on
each machine. output-format is a text string, the name of a particular format
supported by the BFD libraries. (You can list the available binary formats
with ‘objdump -i’.) The script command OUTPUT_FORMAT can also specify the
output format, but this option overrides it. See Chapter 5 [BFD], page 97.

--pic-executable

-gmagic
-Qy

--relax

—--no-relax

Create a position independent executable. This is currently only supported
on ELF platforms. Position independent executables are similar to shared li-
braries in that they are relocated by the dynamic linker to the virtual address
the OS chooses for them (which can vary between invocations). Like normal
dynamically linked executables they can be executed and symbols defined in
the executable cannot be overridden by shared libraries.

This option is ignored for Linux compatibility.

This option is ignored for SVR4 compatibility.

An option with machine dependent effects. This option is only supported on a
few targets. See Section 4.1 [1d and the H8/300], page 79. See Section 4.2 [1d
and the Intel 960 family|, page 79. See Section 4.15 [1d and Xtensa Processors],

Chapter 2: Invocation 21

page 95. See Section 4.3 [1d and the 68HC11 and 68HC12], page 80. See
Section 4.10 [1d and PowerPC 32-bit ELF Support], page 85.

¢

On some platforms the ‘--relax’ option performs target specific, global opti-
mizations that become possible when the linker resolves addressing in the pro-
gram, such as relaxing address modes, synthesizing new instructions, selecting
shorter version of current instructions, and combinig constant values.

On some platforms these link time global optimizations may make symbolic
debugging of the resulting executable impossible. This is known to be the case
for the Matsushita MN10200 and MN10300 family of processors.

On platforms where this is not supported, ‘--relax’ is accepted, but ignored.

On platforms where ‘--relax’ is accepted the option ‘--no-relax’ can be used
to disable the feature.

--retain-symbols-file=filename
Retain only the symbols listed in the file filename, discarding all others. file-
name is simply a flat file, with one symbol name per line. This option is espe-
cially useful in environments (such as VxWorks) where a large global symbol
table is accumulated gradually, to conserve run-time memory.

‘-—retain-symbols-file’ does not discard undefined symbols, or symbols
needed for relocations.

You may only specify ‘-—retain-symbols-file’ once in the command line. It
overrides ‘-s’ and ‘-8’

-rpath=dir

Add a directory to the runtime library search path. This is used when linking an
ELF executable with shared objects. All ‘~rpath’ arguments are concatenated
and passed to the runtime linker, which uses them to locate shared objects at
runtime. The ‘-rpath’ option is also used when locating shared objects which
are needed by shared objects explicitly included in the link; see the description
of the ‘-rpath-link’ option. If ‘~rpath’ is not used when linking an ELF
executable, the contents of the environment variable LD_RUN_PATH will be used
if it is defined.

The ‘-rpath’ option may also be used on SunOS. By default, on SunOS, the
linker will form a runtime search patch out of all the ‘~L’ options it is given. If
a ‘-rpath’ option is used, the runtime search path will be formed exclusively
using the ‘-rpath’ options, ignoring the ‘-L’ options. This can be useful when
using gcc, which adds many ‘-L’ options which may be on NFS mounted file

systems.

For compatibility with other ELF linkers, if the ‘R’ option is followed by a
directory name, rather than a file name, it is treated as the ‘-rpath’ option.

-rpath-link=dir
When using ELF or SunOS, one shared library may require another. This
happens when an 1d -shared link includes a shared library as one of the input
files.

When the linker encounters such a dependency when doing a non-shared, non-
relocatable link, it will automatically try to locate the required shared library

22 The GNU linker
and include it in the link, if it is not included explicitly. In such a case,
the ‘-rpath-link’ option specifies the first set of directories to search. The
‘-rpath-1link’ option may specify a sequence of directory names either by spec-
ifying a list of names separated by colons, or by appearing multiple times.
This option should be used with caution as it overrides the search path that
may have been hard compiled into a shared library. In such a case it is possible
to use unintentionally a different search path than the runtime linker would do.
The linker uses the following search paths to locate required shared libraries:

1. Any directories specified by ‘-rpath-1link’ options.

2. Any directories specified by ‘-rpath’ options. The difference between
‘-rpath’ and ‘-rpath-link’ is that directories specified by ‘-rpath’ op-
tions are included in the executable and used at runtime, whereas the
‘-rpath-link’ option is only effective at link time. Searching ‘-rpath’ in
this way is only supported by native linkers and cross linkers which have
been configured with the ‘~-with-sysroot’ option.

3. On an ELF system, for native linkers, if the ‘-rpath’ and ‘-rpath-1link’
options were not used, search the contents of the environment variable
LD_RUN_PATH.

4. On SunOS, if the ‘-rpath’ option was not used, search any directories
specified using ‘-L’ options.

5. For a native linker, the search the contents of the environment variable
LD_LIBRARY_PATH.

6. For a native ELF linker, the directories in DT_RUNPATH or DT_RPATH of a
shared library are searched for shared libraries needed by it. The DT_RPATH
entries are ignored if DT_RUNPATH entries exist.

7. The default directories, normally ‘/1ib’ and ‘/usr/1ib’.

8. For a native linker on an ELF system, if the file ‘/etc/1d.so.conf’ exists,
the list of directories found in that file.

If the required shared library is not found, the linker will issue a warning and
continue with the link.

-shared

-Bshareable

Create a shared library. This is currently only supported on ELF, XCOFF
and SunOS platforms. On SunOS, the linker will automatically create a shared
library if the ‘-e’ option is not used and there are undefined symbols in the
link.

——sort-common
--sort-common=ascending
--sort-common=descending

This option tells 1d to sort the common symbols by alignment in ascending
or descending order when it places them in the appropriate output sections.
The symbol alignments considered are sixteen-byte or larger, eight-byte, four-
byte, two-byte, and one-byte. This is to prevent gaps between symbols due to

Chapter 2: Invocation 23

alignment constraints. If no sorting order is specified, then descending order is
assumed.

-—-sort-section=name
This option will apply SORT_BY_NAME to all wildcard section patterns in the
linker script.

--sort-section=alignment
This option will apply SORT_BY_ALIGNMENT to all wildcard section patterns in
the linker script.

--split-by-file[=size]
Similar to ‘--split-by-reloc’ but creates a new output section for each input
file when size is reached. size defaults to a size of 1 if not given.

--split-by-reloc[=count]

Tries to creates extra sections in the output file so that no single output section
in the file contains more than count relocations. This is useful when generat-
ing huge relocatable files for downloading into certain real time kernels with the
COFF object file format; since COFF cannot represent more than 65535 reloca-
tions in a single section. Note that this will fail to work with object file formats
which do not support arbitrary sections. The linker will not split up individual
input sections for redistribution, so if a single input section contains more than
count relocations one output section will contain that many relocations. count
defaults to a value of 32768.

--stats Compute and display statistics about the operation of the linker, such as exe-
cution time and memory usage.

--sysroot=directory
Use directory as the location of the sysroot, overriding the configure-time de-
fault. This option is only supported by linkers that were configured using
‘-—with-sysroot’.

--traditional-format
For some targets, the output of 14 is different in some ways from the output
of some existing linker. This switch requests 1d to use the traditional format
instead.

For example, on SunOS, 1d combines duplicate entries in the symbol string
table. This can reduce the size of an output file with full debugging information
by over 30 percent. Unfortunately, the SunOS dbx program can not read the
resulting program (gdb has no trouble). The ‘--traditional-format’ switch
tells 1d to not combine duplicate entries.

--section-start=sectionname=org
Locate a section in the output file at the absolute address given by org. You
may use this option as many times as necessary to locate multiple sections in the
command line. org must be a single hexadecimal integer; for compatibility with
other linkers, you may omit the leading ‘0x’ usually associated with hexadecimal
values. Note: there should be no white space between sectionname, the equals
sign (“="), and org.

24

-Tbss=org

The GNU linker

-Tdata=org
-Ttext=org

Same as ‘--section-start’, with .bss, .data or .text as the sectionname.

-Ttext-segment=org

When creating an ELF executable or shared object, it will set the address of
the first byte of the text segment.

--unresolved-symbols=method

Determine how to handle unresolved symbols. There are four possible values
for ‘method’:

‘ignore-all’
Do not report any unresolved symbols.

‘report-all’
Report all unresolved symbols. This is the default.

‘ignore-in-object-files’
Report unresolved symbols that are contained in shared libraries,
but ignore them if they come from regular object files.

‘ignore-in-shared-1libs’
Report unresolved symbols that come from regular object files, but
ignore them if they come from shared libraries. This can be useful
when creating a dynamic binary and it is known that all the shared
libraries that it should be referencing are included on the linker’s
command line.

The behaviour for shared libraries on their own can also be controlled by the
‘~=[no-Jallow-shlib-undefined’ option.

Normally the linker will generate an error message for each reported unresolved
symbol but the option ‘--warn-unresolved-symbols’ can change this to a
warning.

—-dll-verbose
--verbose [=NUMBER]

—--version-

Display the version number for 1d and list the linker emulations supported.
Display which input files can and cannot be opened. Display the linker script
being used by the linker. If the optional NUMBER argument > 1, plugin symbol
status will also be displayed.

script=version-scriptfile

Specify the name of a version script to the linker. This is typically used when
creating shared libraries to specify additional information about the version
hierarchy for the library being created. This option is only fully supported
on ELF platforms which support shared libraries; see Section 3.9 [VERSION],
page 66. It is partially supported on PE platforms, which can use version scripts
to filter symbol visibility in auto-export mode: any symbols marked ‘local’ in
the version script will not be exported. See Section 4.14 [WIN32], page 88.

Chapter 2: Invocation 25

——Warn-common
Warn when a common symbol is combined with another common symbol or
with a symbol definition. Unix linkers allow this somewhat sloppy practise,
but linkers on some other operating systems do not. This option allows you to
find potential problems from combining global symbols. Unfortunately, some
C libraries use this practise, so you may get some warnings about symbols in
the libraries as well as in your programs.

There are three kinds of global symbols, illustrated here by C examples:

‘int 1 =13’
A definition, which goes in the initialized data section of the output
file.

‘extern int i;’
An undefined reference, which does not allocate space. There must
be either a definition or a common symbol for the variable some-
where.

‘int i;7 A common symbol. If there are only (one or more) common symbols
for a variable, it goes in the uninitialized data area of the output file.
The linker merges multiple common symbols for the same variable
into a single symbol. If they are of different sizes, it picks the largest
size. The linker turns a common symbol into a declaration, if there
is a definition of the same variable.

The ‘~-warn-common’ option can produce five kinds of warnings. Each warning
consists of a pair of lines: the first describes the symbol just encountered, and
the second describes the previous symbol encountered with the same name.
One or both of the two symbols will be a common symbol.

1. Turning a common symbol into a reference, because there is already a
definition for the symbol.
file(section): warning: common of ‘symbol’
overridden by definition
file(section): warning: defined here
2. Turning a common symbol into a reference, because a later definition for
the symbol is encountered. This is the same as the previous case, except
that the symbols are encountered in a different order.
file(section): warning: definition of ‘symbol’

overriding common
file(section): warning: common is here

3. Merging a common symbol with a previous same-sized common symbol.
file(section): warning: multiple common
of ‘symbol’
file(section): warning: previous common is here

4. Merging a common symbol with a previous larger common symbol.

file (section): warning: common of ‘symbol’
overridden by larger common
file(section): warning: larger common is here

26 The GNU linker

5. Merging a common symbol with a previous smaller common symbol. This
is the same as the previous case, except that the symbols are encountered
in a different order.

file(section): warning: common of ‘symbol’
overriding smaller common
file(section): warning: smaller common is here

--warn-constructors
Warn if any global constructors are used. This is only useful for a few object
file formats. For formats like COFF or ELF, the linker can not detect the use
of global constructors.

--warn-multiple-gp

Warn if multiple global pointer values are required in the output file. This is
only meaningful for certain processors, such as the Alpha. Specifically, some
processors put large-valued constants in a special section. A special register
(the global pointer) points into the middle of this section, so that constants
can be loaded efficiently via a base-register relative addressing mode. Since the
offset in base-register relative mode is fixed and relatively small (e.g., 16 bits),
this limits the maximum size of the constant pool. Thus, in large programs,
it is often necessary to use multiple global pointer values in order to be able
to address all possible constants. This option causes a warning to be issued
whenever this case occurs.

--warn-once
Only warn once for each undefined symbol, rather than once per module which
refers to it.

--warn-section-align
Warn if the address of an output section is changed because of alignment.
Typically, the alignment will be set by an input section. The address will only
be changed if it not explicitly specified; that is, if the SECTIONS command
does not specify a start address for the section (see Section 3.6 [SECTIONS],
page 50).

--warn-shared-textrel
Warn if the linker adds a DT_TEXTREL to a shared object.

--warn-alternate-em
Warn if an object has alternate ELF machine code.

--warn-unresolved-symbols
If the linker is going to report an unresolved symbol (see the option
‘~—unresolved-symbols’) it will normally generate an error. This option
makes it generate a warning instead.

—-—error-unresolved-symbols
This restores the linker’s default behaviour of generating errors when it is re-
porting unresolved symbols.

—--whole-archive
For each archive mentioned on the command line after the ‘--whole-archive’
option, include every object file in the archive in the link, rather than searching

Chapter 2: Invocation 27

the archive for the required object files. This is normally used to turn an archive
file into a shared library, forcing every object to be included in the resulting
shared library. This option may be used more than once.

Two notes when using this option from gcc: First, gcc doesn’t know about this
option, so you have to use ‘-W1,-whole-archive’. Second, don’t forget to use
‘-W1l,-no-whole-archive’ after your list of archives, because gcc will add its
own list of archives to your link and you may not want this flag to affect those
as well.

—--wrap=symbol
Use a wrapper function for symbol. Any undefined reference to symbol will be
resolved to __wrap_symbol. Any undefined reference to __real_symbol will

be resolved to symbol.

This can be used to provide a wrapper for a system function. The wrapper func-
tion should be called __wrap_symbol. If it wishes to call the system function,
it should call __real_symbol.

Here is a trivial example:

void x*
__wrap_malloc (size_t c)
{
printf ("malloc called with %zu\n", c);
return __real_malloc (c);
}
If you link other code with this file using ‘~-wrap malloc’, then all calls to
malloc will call the function __wrap_malloc instead. The call to __real_

malloc in __wrap_malloc will call the real malloc function.

You may wish to provide a __real_malloc function as well, so that links with-
out the ‘—-wrap’ option will succeed. If you do this, you should not put the
definition of __real_malloc in the same file as __wrap_malloc; if you do, the
assembler may resolve the call before the linker has a chance to wrap it to
malloc.

—--eh-frame-hdr
Request creation of .eh_frame_hdr section and ELF PT_GNU_EH_FRAME seg-
ment header.

--no-ld-generated-unwind-info
Request creation of .eh_frame unwind info for linker generated code sections
like PLT. This option is on by default if linker generated unwind info is sup-
ported.

--enable-new-dtags

--disable-new-dtags
This linker can create the new dynamic tags in ELF. But the older ELF systems
may not understand them. If you specify ‘--enable-new-dtags’, the dynamic
tags will be created as needed. If you specify ‘--disable-new-dtags’, no new
dynamic tags will be created. By default, the new dynamic tags are not created.
Note that those options are only available for ELF systems.

28 The GNU linker

--hash-size=number
Set the default size of the linker’s hash tables to a prime number close to num-
ber. Increasing this value can reduce the length of time it takes the linker to
perform its tasks, at the expense of increasing the linker’s memory require-
ments. Similarly reducing this value can reduce the memory requirements at
the expense of speed.

--hash-style=style
Set the type of linker’s hash table(s). style can be either sysv for classic ELF
.hash section, gnu for new style GNU .gnu.hash section or both for both the
classic ELF .hash and new style GNU .gnu.hash hash tables. The default is
Sysv.

—--reduce-memory-overheads
This option reduces memory requirements at ld runtime, at the expense of
linking speed. This was introduced to select the old O(n"~2) algorithm for link
map file generation, rather than the new O(n) algorithm which uses about 40%
more memory for symbol storage.

Another effect of the switch is to set the default hash table size to 1021, which
again saves memory at the cost of lengthening the linker’s run time. This is
not done however if the ‘--hash-size’ switch has been used.

The ‘--reduce-memory-overheads’ switch may be also be used to enable other
tradeoffs in future versions of the linker.

--build-id

--build-id=style
Request creation of .note.gnu.build-id ELF note section. The contents of
the note are unique bits identifying this linked file. style can be uuid to use
128 random bits, shal to use a 160-bit SHA1 hash on the normative parts of
the output contents, md5 to use a 128-bit M D5 hash on the normative parts of
the output contents, or Oxhexstring to use a chosen bit string specified as an
even number of hexadecimal digits (- and : characters between digit pairs are
ignored). If style is omitted, shal is used.

The md5 and shal styles produces an identifier that is always the same in an
identical output file, but will be unique among all nonidentical output files. It
is not intended to be compared as a checksum for the file’s contents. A linked
file may be changed later by other tools, but the build ID bit string identifying
the original linked file does not change.

Passing none for style disables the setting from any --build-id options earlier
on the command line.

--no-poison-system-directories
Do not warn for ‘-L’ options using system directories such as ‘/usr/1ib’ when
cross linking. This option is intended for use in chroot environments when such
directories contain the correct libraries for the target system rather than the
host.

Chapter 2: Invocation 29

-—error—poison-system—-directories
Give an error instead of a warning for ‘~L’ options using system directories
when cross linking.

2.1.1 Options Specific to i386 PE Targets

The 1386 PE linker supports the ‘-shared’ option, which causes the output to be a dynam-
ically linked library (DLL) instead of a normal executable. You should name the output
*.d11 when you use this option. In addition, the linker fully supports the standard *.def
files, which may be specified on the linker command line like an object file (in fact, it should
precede archives it exports symbols from, to ensure that they get linked in, just like a normal
object file).

In addition to the options common to all targets, the i386 PE linker support additional
command line options that are specific to the 1386 PE target. Options that take values may
be separated from their values by either a space or an equals sign.

—--add-stdcall-alias
If given, symbols with a stdcall suffix (@nn) will be exported as-is and also with
the suffix stripped. [This option is specific to the 1386 PE targeted port of the
linker]

--base-file file
Use file as the name of a file in which to save the base addresses of all the
relocations needed for generating DLLs with ‘d11tool’. [This is an i386 PE
specific option]

--d11 Create a DLL instead of a regular executable. You may also use ‘-~shared’ or
specify a LIBRARY in a given .def file. [This option is specific to the i386 PE
targeted port of the linker]

--enable-long-section-names

--disable-long-section-names
The PE variants of the Coff object format add an extension that permits the
use of section names longer than eight characters, the normal limit for Coff. By
default, these names are only allowed in object files, as fully-linked executable
images do not carry the Coff string table required to support the longer names.
As a GNU extension, it is possible to allow their use in executable images as
well, or to (probably pointlessly!) disallow it in object files, by using these two
options. Executable images generated with these long section names are slightly
non-standard, carrying as they do a string table, and may generate confusing
output when examined with non-GNU PE-aware tools, such as file viewers and
dumpers. However, GDB relies on the use of PE long section names to find
Dwarf-2 debug information sections in an executable image at runtime, and so
if neither option is specified on the command-line, 1d will enable long section
names, overriding the default and technically correct behaviour, when it finds
the presence of debug information while linking an executable image and not
stripping symbols. [This option is valid for all PE targeted ports of the linker]

30 The GNU linker

--enable-stdcall-fixup

--disable-stdcall-fixup
If the link finds a symbol that it cannot resolve, it will attempt to do “fuzzy
linking” by looking for another defined symbol that differs only in the format
of the symbol name (cdecl vs stdcall) and will resolve that symbol by link-
ing to the match. For example, the undefined symbol _foo might be linked
to the function _foo@12, or the undefined symbol _bar@16 might be linked
to the function _bar. When the linker does this, it prints a warning, since
it normally should have failed to link, but sometimes import libraries gener-
ated from third-party dlls may need this feature to be usable. If you specify
‘-—enable-stdcall-fixup’, this feature is fully enabled and warnings are not
printed. If you specify ‘--disable-stdcall-fixup’, this feature is disabled
and such mismatches are considered to be errors. [This option is specific to the
1386 PE targeted port of the linker]

--leading-underscore

--no-leading-underscore
For most targets default symbol-prefix is an underscore and is defined in tar-
get’s description. By this option it is possible to disable/enable the default
underscore symbol-prefix.

—-—export-all-symbols

If given, all global symbols in the objects used to build a DLL will be exported
by the DLL. Note that this is the default if there otherwise wouldn’t be
any exported symbols. When symbols are explicitly exported via DEF files
or implicitly exported via function attributes, the default is to not export
anything else unless this option is given. Note that the symbols D11Main@12,
D11EntryPoint@0, D11MainCRTStartup@l2, and impure_ptr will not be
automatically exported. Also, symbols imported from other DLLs will not
be re-exported, nor will symbols specifying the DLL’s internal layout such as
those beginning with _head_ or ending with _iname. In addition, no symbols
from libgcc, 1libstd++, 1libmingw32, or crtX.o will be exported. Symbols
whose names begin with __rtti_ or __builtin_ will not be exported, to
help with C++ DLLs. Finally, there is an extensive list of cygwin-private
symbols that are not exported (obviously, this applies on when building DLLs
for cygwin targets). These cygwin-excludes are: _cygwin_dll_entry@12,
_cygwin_crtO_common@8, _cygwin_noncygwin_dll_entry@12, _fmode,
_impure_ptr, cygwin_attach_dll, cygwin_premainO, cygwin_premainl,
cygwin_premain2, cygwin_premain3, and environ. [This option is specific to
the i386 PE targeted port of the linker]

--exclude-symbols symbol,symbol, ...
Specifies a list of symbols which should not be automatically exported. The
symbol names may be delimited by commas or colons. [This option is specific
to the 1386 PE targeted port of the linker]

--exclude-all-symbols
Specifies no symbols should be automatically exported. [This option is specific
to the i386 PE targeted port of the linker]

Chapter 2: Invocation 31

--file-alignment
Specify the file alignment. Sections in the file will always begin at file offsets
which are multiples of this number. This defaults to 512. [This option is specific
to the 1386 PE targeted port of the linker]

—--heap reserve

--heap reserve,commit
Specify the number of bytes of memory to reserve (and optionally commit) to
be used as heap for this program. The default is 1Mb reserved, 4K committed.
[This option is specific to the 1386 PE targeted port of the linker]

--image-base value
Use value as the base address of your program or dll. This is the lowest memory
location that will be used when your program or dll is loaded. To reduce the
need to relocate and improve performance of your dlls, each should have a
unique base address and not overlap any other dlls. The default is 0x400000
for executables, and 0x10000000 for dlls. [This option is specific to the i386 PE
targeted port of the linker]

--kill-at
If given, the stdcall suffixes (@nn) will be stripped from symbols before they are
exported. [This option is specific to the i386 PE targeted port of the linker]

--large-address—aware
If given, the appropriate bit in the “Characteristics” field of the COFF header is
set to indicate that this executable supports virtual addresses greater than 2 gi-
gabytes. This should be used in conjunction with the /3GB or /USERVA=value
megabytes switch in the “[operating systems|” section of the BOOT.INI. Oth-
erwise, this bit has no effect. [This option is specific to PE targeted ports of
the linker]

--major-image-version value
Sets the major number of the “image version”. Defaults to 1. [This option is
specific to the i386 PE targeted port of the linker]

--major-os-version value
Sets the major number of the “os version”. Defaults to 4. [This option is
specific to the i386 PE targeted port of the linker]

--major-subsystem-version value
Sets the major number of the “subsystem version”. Defaults to 4. [This option
is specific to the 1386 PE targeted port of the linker]

--minor-image-version value
Sets the minor number of the “image version”. Defaults to 0. [This option is
specific to the i386 PE targeted port of the linker]

-—-minor-os-version value
Sets the minor number of the “os version”. Defaults to 0. [This option is specific
to the 1386 PE targeted port of the linker]

32 The GNU linker

--minor-subsystem-version value
Sets the minor number of the “subsystem version”. Defaults to 0. [This option
is specific to the 1386 PE targeted port of the linker]

—--output-def file
The linker will create the file file which will contain a DEF file corresponding
to the DLL the linker is generating. This DEF file (which should be called
*.def) may be used to create an import library with d11tool or may be used
as a reference to automatically or implicitly exported symbols. [This option is
specific to the i386 PE targeted port of the linker]

--out-implib file
The linker will create the file file which will contain an import lib corresponding
to the DLL the linker is generating. This import lib (which should be called
*.dll.a or *.a may be used to link clients against the generated DLL; this
behaviour makes it possible to skip a separate d11tool import library creation
step. [This option is specific to the 1386 PE targeted port of the linker]

--enable-auto-image-base
Automatically choose the image base for DLLs, unless one is specified using
the -—image-base argument. By using a hash generated from the dllname to
create unique image bases for each DLL, in-memory collisions and relocations
which can delay program execution are avoided. [This option is specific to the
1386 PE targeted port of the linker]

--disable-auto-image-base
Do not automatically generate a unique image base. If there is no user-specified
image base (--image-base) then use the platform default. [This option is
specific to the i386 PE targeted port of the linker]

--dll-search-prefix string
When linking dynamically to a dll without an import library, search for
<string><basename>.dll in preference to lib<basename>.dll. This
behaviour allows easy distinction between DLLs built for the various
"subplatforms": native, cygwin, uwin, pw, etc. For instance, cygwin DLLs
typically use --dll-search-prefix=cyg. [This option is specific to the i386
PE targeted port of the linker]

--enable-auto-import
Do sophisticated linking of _symbol to __imp__symbol for DATA imports from
DLLs, and create the necessary thunking symbols when building the import
libraries with those DATA exports. Note: Use of the ’auto-import’ extension
will cause the text section of the image file to be made writable. This does not
conform to the PE-COFF format specification published by Microsoft.

Note - use of the 'auto-import’ extension will also cause read only data which
would normally be placed into the .rdata section to be placed into the .data
section instead. This is in order to work around a problem with consts that is
described here: http://www.cygwin.com/ml/cygwin/2004-09/msg01101.html

Using ’auto-import’ generally will ’just work’ — but sometimes you may see this
message:

Chapter 2: Invocation 33

"variable '<var>’ can’t be auto-imported. Please read the documentation for
Id’s ——enable-auto-import for details."

This message occurs when some (sub)expression accesses an address ultimately
given by the sum of two constants (Win32 import tables only allow one). In-
stances where this may occur include accesses to member fields of struct vari-
ables imported from a DLL, as well as using a constant index into an array
variable imported from a DLL. Any multiword variable (arrays, structs, long
long, etc) may trigger this error condition. However, regardless of the exact
data type of the offending exported variable, 1d will always detect it, issue the
warning, and exit.

There are several ways to address this difficulty, regardless of the data type of
the exported variable:

One way is to use —enable-runtime-pseudo-reloc switch. This leaves the task of
adjusting references in your client code for runtime environment, so this method
works only when runtime environment supports this feature.

A second solution is to force one of the ’constants’ to be a variable — that
is, unknown and un-optimizable at compile time. For arrays, there are two
possibilities: a) make the indexee (the array’s address) a variable, or b) make
the 'constant’ index a variable. Thus:

extern type extern_arrayl[];
extern_array[1] -->
{ volatile type *t=extern_array; t[1] }

or

extern type extern_arrayl[];
extern_array[1] -->
{ volatile int t=1; extern_array[t] }

For structs (and most other multiword data types) the only option is to make
the struct itself (or the long long, or the ...) variable:

extern struct s extern_struct;
extern_struct.field -->
{ volatile struct s *t=&extern_struct; t->field }

or

extern long long extern_11;
extern_11 -->
{ volatile long long * local_ll=&extern_11; *local_11 }

A third method of dealing with this difficulty is to abandon ’auto-import’ for
the offending symbol and mark it with __declspec(dllimport). However,
in practise that requires using compile-time #defines to indicate whether you
are building a DLL, building client code that will link to the DLL, or merely
building/linking to a static library. In making the choice between the various
methods of resolving the ’direct address with constant offset’ problem, you
should consider typical real-world usage:

Original:
--foo.h

34 The GNU linker

extern int arr[];

-—-foo.c

#include "foo.h"

void main(int argc, char **argv){
printf ("%d\n",arr[1]);

}

Solution 1:

--foo.h

extern int arr[];

--foo.c

#include "foo.h"

void main(int argc, char **argv){
/* This workaround is for win32 and cygwin; do not "optimize" */
volatile int *parr = arr;
printf ("%d\n",parr[1]);

X

Solution 2:

--foo.h
/* Note: auto-export is assumed (no __declspec(dllexport)) */
#if (defined(_WIN32) || defined(__CYGWIN__)) && \
! (defined (FOO_BUILD_DLL) || defined(FOO_STATIC))
#define FOO_IMPORT __declspec(dllimport)

#else

#define FOO_IMPORT

#endif

extern FOO_IMPORT int arr[];
--foo.c

#include "foo.h"

void main(int argc, char **argv){
printf ("%d\n",arr[1]);

}

A fourth way to avoid this problem is to re-code your library to use a func-
tional interface rather than a data interface for the offending variables (e.g.
set_foo() and get_foo() accessor functions). [This option is specific to the 1386
PE targeted port of the linker]

--disable-auto-import
Do not attempt to do sophisticated linking of _symbol to __imp__symbol for
DATA imports from DLLs. [This option is specific to the i386 PE targeted port
of the linker]

—--enable-runtime-pseudo-reloc
If your code contains expressions described in —enable-auto-import section, that
is, DATA imports from DLL with non-zero offset, this switch will create a vector
of 'runtime pseudo relocations’ which can be used by runtime environment to
adjust references to such data in your client code. [This option is specific to
the 1386 PE targeted port of the linker]

Chapter 2: Invocation 35

--disable-runtime-pseudo-reloc
Do not create pseudo relocations for non-zero offset DATA imports from DLLs.
This is the default. [This option is specific to the 1386 PE targeted port of the
linker]|

--enable-extra-pe-debug
Show additional debug info related to auto-import symbol thunking. [This
option is specific to the 1386 PE targeted port of the linker]

--section-alignment
Sets the section alignment. Sections in memory will always begin at addresses
which are a multiple of this number. Defaults to 0x1000. [This option is specific
to the i386 PE targeted port of the linker]

-—-stack reserve

—--stack reserve,commit
Specify the number of bytes of memory to reserve (and optionally commit) to
be used as stack for this program. The default is 2Mb reserved, 4K committed.
[This option is specific to the i386 PE targeted port of the linker]

--subsystem which

—-—-subsystem which :major

—--subsystem which:major.minor
Specifies the subsystem under which your program will execute. The legal
values for which are native, windows, console, posix, and xbox. You may
optionally set the subsystem version also. Numeric values are also accepted for
which. [This option is specific to the 1386 PE targeted port of the linker]
The following options set flags in the D11Characteristics field of the PE file
header: [These options are specific to PE targeted ports of the linker]

--dynamicbase
The image base address may be relocated using address space layout random-
ization (ASLR). This feature was introduced with MS Windows Vista for 1386
PE targets.

--forceinteg
Code integrity checks are enforced.

—--nxcompat
The image is compatible with the Data Execution Prevention. This feature was
introduced with MS Windows XP SP2 for i386 PE targets.

--no-isolation
Although the image understands isolation, do not isolate the image.

--no-seh The image does not use SEH. No SE handler may be called from this image.
--no-bind
Do not bind this image.

——wdmdriver
The driver uses the MS Windows Driver Model.

--tsaware
The image is Terminal Server aware.

36 The GNU linker

2.1.2 Options specific to C6X uClinux targets

The C6X uClinux target uses a binary format called DSBT to support shared libraries.
Each shared library in the system needs to have a unique index; all executables use an
index of 0.

-—dsbt-size size
This option sets the number of entires in the DSBT of the current executable
or shared library to size. The default is to create a table with 64 entries.

--dsbt-index index
This option sets the DSBT index of the current executable or shared library to
index. The default is 0, which is appropriate for generating executables. If a
shared library is generated with a DSBT index of 0, the R_C6000_DSBT_INDEX
relocs are copied into the output file.

The ‘--no-merge-exidx-entries’ switch disables the merging of adjacent ex-
idx entries in frame unwind info.

2.1.3 Options specific to Motorola 68HC11 and 68HC12 targets

The 68HCI11 and 68HC12 linkers support specific options to control the memory bank
switching mapping and trampoline code generation.

--no-trampoline
This option disables the generation of trampoline. By default a trampoline is
generated for each far function which is called using a jsr instruction (this
happens when a pointer to a far function is taken).

-—bank-window name
This option indicates to the linker the name of the memory region in the
‘MEMORY’ specification that describes the memory bank window. The defini-
tion of such region is then used by the linker to compute paging and addresses
within the memory window.

2.1.4 Options specific to Motorola 68K target

The following options are supported to control handling of GOT generation when linking
for 68K targets.

--got=type
This option tells the linker which GOT generation scheme to use. type should
be one of ‘single’, ‘negative’, ‘multigot’ or ‘target’. For more information
refer to the Info entry for ‘1d’.

2.1.5 Options specific to MIPS targets

The following options are supported to control microMIPS instruction generation when
linking for MIPS targets.

--insn32

--no-insn32
These options control the choice of microMIPS instructions used in code gen-
erated by the linker, such as that in the PLT or lazy binding stubs, or in

Chapter 2: Invocation 37

relaxation. If ‘--insn32’ is used, then the linker only uses 32-bit instruction
encodings. By default or if ‘~—no-insn32’ is used, all instruction encodings are
used, including 16-bit ones where possible.

2.2 Environment Variables

You can change the behaviour of 1d with the environment variables GNUTARGET,
LDEMULATION and COLLECT_NO_DEMANGLE.

GNUTARGET determines the input-file object format if you don’t use ‘-b’ (or its synonym
‘~-format’). Its value should be one of the BFD names for an input format (see Chapter 5
[BED], page 97). If there is no GNUTARGET in the environment, 1d uses the natural format
of the target. If GNUTARGET is set to default then BFD attempts to discover the input
format by examining binary input files; this method often succeeds, but there are potential
ambiguities, since there is no method of ensuring that the magic number used to specify
object-file formats is unique. However, the configuration procedure for BFD on each system
places the conventional format for that system first in the search-list, so ambiguities are
resolved in favor of convention.

LDEMULATION determines the default emulation if you don’t use the ‘-m’ option. The emula-
tion can affect various aspects of linker behaviour, particularly the default linker script. You
can list the available emulations with the ‘--verbose’ or ‘-V’ options. If the ‘-m’ option is
not used, and the LDEMULATION environment variable is not defined, the default emulation
depends upon how the linker was configured.

Normally, the linker will default to demangling symbols. However, if COLLECT_NO_DEMANGLE
is set in the environment, then it will default to not demangling symbols. This environment
variable is used in a similar fashion by the gcc linker wrapper program. The default may
be overridden by the ‘--demangle’ and ‘--no-demangle’ options.

Chapter 3: Linker Scripts 39

3 Linker Scripts

Every link is controlled by a linker script. This script is written in the linker command
language.

The main purpose of the linker script is to describe how the sections in the input files should
be mapped into the output file, and to control the memory layout of the output file. Most
linker scripts do nothing more than this. However, when necessary, the linker script can also
direct the linker to perform many other operations, using the commands described below.

The linker always uses a linker script. If you do not supply one yourself, the linker will use
a default script that is compiled into the linker executable. You can use the ‘--verbose’
command line option to display the default linker script. Certain command line options,
such as ‘-r’ or ‘-N’, will affect the default linker script.

You may supply your own linker script by using the ‘-T’ command line option. When you
do this, your linker script will replace the default linker script.

You may also use linker scripts implicitly by naming them as input files to the linker, as
though they were files to be linked. See Section 3.11 [Implicit Linker Scripts], page 77.

3.1 Basic Linker Script Concepts

We need to define some basic concepts and vocabulary in order to describe the linker script
language.

The linker combines input files into a single output file. The output file and each input file
are in a special data format known as an object file format. Each file is called an object
file. The output file is often called an executable, but for our purposes we will also call it
an object file. Each object file has, among other things, a list of sections. We sometimes
refer to a section in an input file as an input section; similarly, a section in the output file
is an output section.

Fach section in an object file has a name and a size. Most sections also have an associated
block of data, known as the section contents. A section may be marked as loadable, which
mean that the contents should be loaded into memory when the output file is run. A section
with no contents may be allocatable, which means that an area in memory should be set
aside, but nothing in particular should be loaded there (in some cases this memory must
be zeroed out). A section which is neither loadable nor allocatable typically contains some
sort of debugging information.

Every loadable or allocatable output section has two addresses. The first is the VMA, or
virtual memory address. This is the address the section will have when the output file is
run. The second is the LMA, or load memory address. This is the address at which the
section will be loaded. In most cases the two addresses will be the same. An example of
when they might be different is when a data section is loaded into ROM, and then copied
into RAM when the program starts up (this technique is often used to initialize global
variables in a ROM based system). In this case the ROM address would be the LMA, and
the RAM address would be the VMA.

You can see the sections in an object file by using the objdump program with the ‘-h’ option.

Every object file also has a list of symbols, known as the symbol table. A symbol may be
defined or undefined. Each symbol has a name, and each defined symbol has an address,

40 The GNU linker

among other information. If you compile a C or C++ program into an object file, you will get
a defined symbol for every defined function and global or static variable. Every undefined
function or global variable which is referenced in the input file will become an undefined
symbol.

You can see the symbols in an object file by using the nm program, or by using the objdump
program with the ‘-=t’ option.

3.2 Linker Script Format

Linker scripts are text files.

You write a linker script as a series of commands. Each command is either a keyword,
possibly followed by arguments, or an assignment to a symbol. You may separate commands
using semicolons. Whitespace is generally ignored.

Strings such as file or format names can normally be entered directly. If the file name
contains a character such as a comma which would otherwise serve to separate file names,
you may put the file name in double quotes. There is no way to use a double quote character
in a file name.

You may include comments in linker scripts just as in C, delimited by ‘/*’ and ‘*/’. As in
C, comments are syntactically equivalent to whitespace.

3.3 Simple Linker Script Example

Many linker scripts are fairly simple.

The simplest possible linker script has just one command: ‘SECTIONS’. You use the
‘SECTIONS’ command to describe the memory layout of the output file.

The ‘SECTIONS’ command is a powerful command. Here we will describe a simple use of it.
Let’s assume your program consists only of code, initialized data, and uninitialized data.
These will be in the ‘.text’, ‘.data’, and ‘.bss’ sections, respectively. Let’s assume further
that these are the only sections which appear in your input files.

For this example, let’s say that the code should be loaded at address 0x10000, and that the
data should start at address 0x8000000. Here is a linker script which will do that:

SECTIONS

{
. = 0x10000;
.text @ { x(.text) }
. = 0x8000000;
.data : { x(.data) }
.bss : { *(.bss)

}

You write the ‘SECTIONS’ command as the keyword ‘SECTIONS’, followed by a series of

symbol assignments and output section descriptions enclosed in curly braces.

The first line inside the ‘SECTIONS’ command of the above example sets the value of the
special symbol .’, which is the location counter. If you do not specify the address of an
output section in some other way (other ways are described later), the address is set from
the current value of the location counter. The location counter is then incremented by the
size of the output section. At the start of the ‘SECTIONS’ command, the location counter
has the value ‘0’.

Chapter 3: Linker Scripts 41

The second line defines an output section, ‘.text’. The colon is required syntax which may
be ignored for now. Within the curly braces after the output section name, you list the
names of the input sections which should be placed into this output section. The ‘¥’ is a
wildcard which matches any file name. The expression ‘*(.text)’ means all ‘.text’ input
sections in all input files.

Since the location counter is ‘0x10000” when the output section ‘. text’ is defined, the linker
will set the address of the ‘.text’ section in the output file to be ‘0x10000’.

The remaining lines define the ‘.data’ and ‘.bss’ sections in the output file. The linker
will place the ‘.data’ output section at address ‘0x8000000’. After the linker places the
‘.data’ output section, the value of the location counter will be ‘0x8000000’ plus the size of
the ‘.data’ output section. The effect is that the linker will place the ‘.bss’ output section
immediately after the ‘.data’ output section in memory.

The linker will ensure that each output section has the required alignment, by increasing
the location counter if necessary. In this example, the specified addresses for the ‘.text’
and ‘.data’ sections will probably satisfy any alignment constraints, but the linker may
have to create a small gap between the ‘.data’ and ‘.bss’ sections.

That’s it! That’s a simple and complete linker script.

3.4 Simple Linker Script Commands

In this section we describe the simple linker script commands.

3.4.1 Setting the Entry Point

The first instruction to execute in a program is called the entry point. You can use the
ENTRY linker script command to set the entry point. The argument is a symbol name:
ENTRY (symbol)

There are several ways to set the entry point. The linker will set the entry point by trying
each of the following methods in order, and stopping when one of them succeeds:

e the ‘-e’ entry command-line option;
e the ENTRY (symbol) command in a linker script;

e the value of a target specific symbol, if it is defined; For many targets this is start,
but PE and BeOS based systems for example check a list of possible entry symbols,
matching the first one found.

e the address of the first byte of the ‘.text’ section, if present;
e The address 0.

3.4.2 Commands Dealing with Files

Several linker script commands deal with files.

INCLUDE filename
Include the linker script filename at this point. The file will be searched for in
the current directory, and in any directory specified with the ‘-L’ option. You
can nest calls to INCLUDE up to 10 levels deep.
You can place INCLUDE directives at the top level, in MEMORY or SECTIONS com-
mands, or in output section descriptions.

42 The GNU linker

INPUT(file, file, ...)

INPUT(file file ...)
The INPUT command directs the linker to include the named files in the link,
as though they were named on the command line.

For example, if you always want to include ‘subr.o’ any time you do a link,
but you can’t be bothered to put it on every link command line, then you can
put ‘INPUT (subr.o)’ in your linker script.

In fact, if you like, you can list all of your input files in the linker script, and
then invoke the linker with nothing but a ‘-T” option.

In case a sysroot prefix is configured, and the filename starts with the ¢/’
character, and the script being processed was located inside the sysroot prefix,
the filename will be looked for in the sysroot prefix. Otherwise, the linker will
try to open the file in the current directory. If it is not found, the linker will
search through the archive library search path. See the description of ‘-L’ in
Section 2.1 [Command Line Options|, page 3.

If you use ‘INPUT (-1file)’, 1d will transform the name to libfile.a, as with
the command line argument ‘-1’.

When you use the INPUT command in an implicit linker script, the files will be
included in the link at the point at which the linker script file is included. This
can affect archive searching.

GROUP(file, file, ...)

GROUP(file file ...)
The GROUP command is like INPUT, except that the named files should all be
archives, and they are searched repeatedly until no new undefined references
are created. See the description of ‘- (’ in Section 2.1 [Command Line Options],
page 3.

AS_NEEDED(file, file, ...)

AS_NEEDED(file file ...)
This construct can appear only inside of the INPUT or GROUP commands, among
other filenames. The files listed will be handled as if they appear directly in the
INPUT or GROUP commands, with the exception of ELF shared libraries, that
will be added only when they are actually needed. This construct essentially

enables ‘-—as-needed’ option for all the files listed inside of it and restores
previous ‘-—as-needed’ resp. ‘-—-no-as-needed’ setting afterwards.
OUTPUT (filename)

The OUTPUT command names the output file. Using OUTPUT(filename) in
the linker script is exactly like using ‘~o filename’ on the command line (see
Section 2.1 [Command Line Options|, page 3). If both are used, the command
line option takes precedence.

You can use the OUTPUT command to define a default name for the output file
other than the usual default of ‘a.out’.

SEARCH_DIR(path)
The SEARCH_DIR command adds path to the list of paths where 1d looks for
archive libraries. Using SEARCH_DIR(path) is exactly like using ‘-L path’ on

Chapter 3: Linker Scripts 43

the command line (see Section 2.1 [Command Line Options]|, page 3). If both
are used, then the linker will search both paths. Paths specified using the
command line option are searched first.

STARTUP (filename)
The STARTUP command is just like the INPUT command, except that filename
will become the first input file to be linked, as though it were specified first on
the command line. This may be useful when using a system in which the entry
point is always the start of the first file.

3.4.3 Commands Dealing with Object File Formats

A couple of linker script commands deal with object file formats.

OUTPUT_FORMAT (bfdname)

OUTPUT_FORMAT (default, big, little)
The OUTPUT_FORMAT command names the BFD format to use for the output
file (see Chapter 5 [BFD], page 97). Using OUTPUT_FORMAT (bfdname) is exactly
like using ‘--oformat bfdname’ on the command line (see Section 2.1 [Com-
mand Line Options|, page 3). If both are used, the command line option takes
precedence.

You can use OUTPUT_FORMAT with three arguments to use different formats based
on the ‘-EB’ and ‘-EL’ command line options. This permits the linker script to
set the output format based on the desired endianness.

If neither ‘-EB’ nor ‘-EL’ are used, then the output format will be the first argu-
ment, default. If ‘~EB’ is used, the output format will be the second argument,
big. If ‘-EL’ is used, the output format will be the third argument, little.

For example, the default linker script for the MIPS ELF target uses this com-
mand:
OUTPUT_FORMAT (e1£32-bigmips, elf32-bigmips, elf32-littlemips)

This says that the default format for the output file is ‘e1£32-bigmips’, but if
the user uses the ‘~EL’ command line option, the output file will be created in
the ‘e1f32-1littlemips’ format.

TARGET (bfdname)
The TARGET command names the BFD format to use when reading input files.
It affects subsequent INPUT and GROUP commands. This command is like using
‘~b bfdname’ on the command line (see Section 2.1 [Command Line Options],
page 3). If the TARGET command is used but OUTPUT_FORMAT is not, then the
last TARGET command is also used to set the format for the output file. See
Chapter 5 [BFD], page 97.

3.4.4 Assign alias names to memory regions

Alias names can be added to existing memory regions created with the Section 3.7 [MEM-
ORY], page 62 command. Each name corresponds to at most one memory region.
REGION_ALIAS(alias, region)

The REGION_ALTIAS function creates an alias name alias for the memory region region. This
allows a flexible mapping of output sections to memory regions. An example follows.

44 The GNU linker

Suppose we have an application for embedded systems which come with various memory
storage devices. All have a general purpose, volatile memory RAM that allows code execution
or data storage. Some may have a read-only, non-volatile memory ROM that allows code
execution and read-only data access. The last variant is a read-only, non-volatile memory
ROM2 with read-only data access and no code execution capability. We have four output
sections:

e .text program code;

e .rodata read-only data;

e .data read-write initialized data;

e .bss read-write zero initialized data.
The goal is to provide a linker command file that contains a system independent part
defining the output sections and a system dependent part mapping the output sections

to the memory regions available on the system. Our embedded systems come with three
different memory setups A, B and C:

Section Variant A Variant B Variant C
text RAM ROM ROM
.rodata RAM ROM ROM2

.data RAM RAM/ROM RAM/ROM2
.bss RAM RAM RAM

The notation RAM/ROM or RAM/ROM2 means that this section is loaded into region ROM or
ROM2 respectively. Please note that the load address of the .data section starts in all three
variants at the end of the .rodata section.

The base linker script that deals with the output sections follows. It includes the system
dependent linkcmds.memory file that describes the memory layout:

INCLUDE linkcmds.memory

SECTIONS
{
.text :
{
*(.text)

} > REGION_TEXT
.rodata :

{

*(.rodata)
rodata_end = .;

} > REGION_RODATA
.data : AT (rodata_end)

{

data_start = .;
*(.data)

} > REGION_DATA
data_size = SIZEOF(.data);
data_load_start = LOADADDR(.data);
.bss :

{

*(.bss)
} > REGION_BSS

Chapter 3: Linker Scripts

45

Now we need three different 1inkcmds.memory files to define memory regions and alias

names. The content of linkcmds.memory for the three variants A, B and C:

A Here everything goes into the RAM.
MEMORY
{
RAM : ORIGIN = O, LENGTH = 4M
}

REGION_ALIAS ("REGION_TEXT", RAM);
REGION_ALIAS ("REGION_RODATA", RAM);
REGION_ALIAS ("REGION_DATA", RAM);
REGION_ALTIAS ("REGION_BSS", RAM);

B Program code and read-only data go into the ROM. Read-write data goes into
the RAM. An image of the initialized data is loaded into the ROM and will be

copied during system start into the RAM.

MEMORY
{
ROM : ORIGIN = O, LENGTH = 3M
RAM : ORIGIN = 0x10000000, LENGTH = 1M
}

REGION_ALIAS ("REGION_TEXT", ROM);
REGION_ALTIAS ("REGION_RODATA", ROM);
REGION_ALTIAS ("REGION_DATA", RAM);
REGION_ALIAS("REGION_BSS", RAM);

C Program code goes into the ROM. Read-only data goes into the ROM2. Read-
write data goes into the RAM. An image of the initialized data is loaded into the

ROM2 and will be copied during system start into the RAM.

MEMORY
{
ROM : ORIGIN = O, LENGTH = 2M
ROM2 : ORIGIN = 0x10000000, LENGTH = 1M
RAM : ORIGIN = 0x20000000, LENGTH = 1M
}

REGION_ALIAS ("REGION_TEXT", ROM);
REGION_ALIAS ("REGION_RODATA", ROM2);
REGION_ALIAS("REGION_DATA", RAM);
REGION_ALTIAS("REGION_BSS", RAM);

It is possible to write a common system initialization routine to copy the .data section

from ROM or ROM2 into the RAM if necessary:
#include <string.h>

extern char data_start [];
extern char data_size [];
extern char data_load_start [];

void copy_data(void)
{
if (data_start != data_load_start)
{
memcpy (data_start, data_load_start, (size_t) data_size);

}

46 The GNU linker

}
3.4.5 Other Linker Script Commands

There are a few other linker scripts commands.

ASSERT (exp, message)
Ensure that exp is non-zero. If it is zero, then exit the linker with an error
code, and print message.

EXTERN (symbol symbol ...)
Force symbol to be entered in the output file as an undefined symbol. Doing this
may, for example, trigger linking of additional modules from standard libraries.
You may list several symbols for each EXTERN, and you may use EXTERN multiple
times. This command has the same effect as the ‘-u’ command-line option.

FORCE_COMMON_ALLOCATION
This command has the same effect as the ‘-d’ command-line option: to make
1d assign space to common symbols even if a relocatable output file is specified

(*-r’).

INHIBIT_COMMON_ALLOCATION
This command has the same effect as the ‘--no-define-common’ command-line
option: to make 1d omit the assignment of addresses to common symbols even
for a non-relocatable output file.

INSERT [AFTER | BEFORE] output_section

This command is typically used in a script specified by ‘-T’ to augment the
default SECTIONS with, for example, overlays. It inserts all prior linker script
statements after (or before) output_section, and also causes ‘-T’ to not override
the default linker script. The exact insertion point is as for orphan sections.
See Section 3.10.5 [Location Counter|, page 70. The insertion happens after the
linker has mapped input sections to output sections. Prior to the insertion, since
‘=T’ scripts are parsed before the default linker script, statements in the ‘-T’
script occur before the default linker script statements in the internal linker
representation of the script. In particular, input section assignments will be
made to ‘-T’ output sections before those in the default script. Here is an
example of how a ‘-T’ script using INSERT might look:

SECTIONS
{
OVERLAY :
{
.ovl { ovix(.text) }
.ov2 { ov2*x(.text) }
}
}
INSERT AFTER .text;

NOCROSSREFS(section section ...)
This command may be used to tell 1d to issue an error about any references
among certain output sections.
In certain types of programs, particularly on embedded systems when using
overlays, when one section is loaded into memory, another section will not be.

Chapter 3: Linker Scripts 47

Any direct references between the two sections would be errors. For example,
it would be an error if code in one section called a function defined in the other
section.

The NOCROSSREFS command takes a list of output section names. If 1d detects
any cross references between the sections, it reports an error and returns a
non-zero exit status. Note that the NOCROSSREFS command uses output section
names, not input section names.

OUTPUT_ARCH(bfdarch)
Specify a particular output machine architecture. The argument is one of the
names used by the BFD library (see Chapter 5 [BFD], page 97). You can see
the architecture of an object file by using the objdump program with the ‘-f’
option.

LD_FEATURE (string)
This command may be used to modify 1d behavior. If string is "SANE_EXPR"
then absolute symbols and numbers in a script are simply treated as numbers
everywhere. See Section 3.10.8 [Expression Section], page 73.

3.5 Assigning Values to Symbols

You may assign a value to a symbol in a linker script. This will define the symbol and place
it into the symbol table with a global scope.

3.5.1 Simple Assignments

You may assign to a symbol using any of the C assignment operators:

symbol = expression ;

symbol += expression ;
symbol -= expression ;
symbol *= expression ;
symbol /= expression ;

symbol <<= expression ;
symbol >>= expression ;
symbol &= expression ;
symbol |= expression ;

The first case will define symbol to the value of expression. In the other cases, symbol must
already be defined, and the value will be adjusted accordingly.

The special symbol name ‘.’ indicates the location counter. You may only use this within
a SECTIONS command. See Section 3.10.5 [Location Counter|, page 70.

The semicolon after expression is required.
Expressions are defined below; see Section 3.10 [Expressions], page 69.

You may write symbol assignments as commands in their own right, or as statements within
a SECTIONS command, or as part of an output section description in a SECTIONS command.

The section of the symbol will be set from the section of the expression; for more information,
see Section 3.10.8 [Expression Section], page 73.

Here is an example showing the three different places that symbol assignments may be used:

48 The GNU linker

floating_point = O;
SECTIONS

{
.text :

{
*(.text)
_etext = .;
}
_bdata = (. + 3) & ~ 3;
.data : { *(.data) }
}
In this example, the symbol ‘floating_point’ will be defined as zero. The symbol ‘_etext’
will be defined as the address following the last ‘. text’ input section. The symbol ‘_bdata’
will be defined as the address following the ‘.text’ output section aligned upward to a 4
byte boundary.

3.5.2 PROVIDE

In some cases, it is desirable for a linker script to define a symbol only if it is referenced and
is not defined by any object included in the link. For example, traditional linkers defined
the symbol ‘etext’. However, ANSI C requires that the user be able to use ‘etext’ as
a function name without encountering an error. The PROVIDE keyword may be used to
define a symbol, such as ‘etext’, only if it is referenced but not defined. The syntax is
PROVIDE (symbol = expression).

Here is an example of using PROVIDE to define ‘etext’:

SECTIONS

{
.text :

{
*(.text)
_etext = .;
PROVIDE(etext = .);
}
}
In this example, if the program defines ‘_etext’ (with a leading underscore), the linker will
give a multiple definition error. If, on the other hand, the program defines ‘etext’ (with
no leading underscore), the linker will silently use the definition in the program. If the
program references ‘etext’ but does not define it, the linker will use the definition in the
linker script.

3.5.3 PROVIDE_HIDDEN

Similar to PROVIDE. For ELF targeted ports, the symbol will be hidden and won’t be
exported.

3.5.4 Source Code Reference

Accessing a linker script defined variable from source code is not intuitive. In particular a
linker script symbol is not equivalent to a variable declaration in a high level language, it
is instead a symbol that does not have a value.

Before going further, it is important to note that compilers often transform names in the
source code into different names when they are stored in the symbol table. For example,

Chapter 3: Linker Scripts 49

Fortran compilers commonly prepend or append an underscore, and C++ performs extensive
‘name mangling’. Therefore there might be a discrepancy between the name of a variable
as it is used in source code and the name of the same variable as it is defined in a linker
script. For example in C a linker script variable might be referred to as:

extern int foo;

But in the linker script it might be defined as:
_foo = 1000;

In the remaining examples however it is assumed that no name transformation has taken
place.

When a symbol is declared in a high level language such as C, two things happen. The first
is that the compiler reserves enough space in the program’s memory to hold the value of
the symbol. The second is that the compiler creates an entry in the program’s symbol table
which holds the symbol’s address. ie the symbol table contains the address of the block
of memory holding the symbol’s value. So for example the following C declaration, at file
scope:

int foo = 1000;

creates a entry called ‘foo’ in the symbol table. This entry holds the address of an ‘int’
sized block of memory where the number 1000 is initially stored.

When a program references a symbol the compiler generates code that first accesses the
symbol table to find the address of the symbol’s memory block and then code to read the
value from that memory block. So:

foo = 1;

looks up the symbol ‘foo’ in the symbol table, gets the address associated with this symbol
and then writes the value 1 into that address. Whereas:

int * a = & foo;

looks up the symbol ‘foo’ in the symbol table, gets it address and then copies this address
into the block of memory associated with the variable ‘a’.

Linker scripts symbol declarations, by contrast, create an entry in the symbol table but do
not assign any memory to them. Thus they are an address without a value. So for example
the linker script definition:

foo = 1000;

creates an entry in the symbol table called ‘foo’ which holds the address of memory location
1000, but nothing special is stored at address 1000. This means that you cannot access the
value of a linker script defined symbol - it has no value - all you can do is access the address
of a linker script defined symbol.

Hence when you are using a linker script defined symbol in source code you should always
take the address of the symbol, and never attempt to use its value. For example suppose
you want to copy the contents of a section of memory called .ROM into a section called
.FLASH and the linker script contains these declarations:

start_of_ROM = .ROM;
end_of_ROM = .ROM + sizeof (.ROM) - 1;
start_of _FLASH = .FLASH;

Then the C source code to perform the copy would be:

50 The GNU linker

extern char start_of_ROM, end_of_ROM, start_of_FLASH;

memcpy (& start_of _FLASH, & start_of_ROM, & end_of _ROM - & start_of_ROM);

Note the use of the ‘&’ operators. These are correct.

3.6 SECTIONS Command

The SECTIONS command tells the linker how to map input sections into output sections,
and how to place the output sections in memory.

The format of the SECTIONS command is:

SECTIONS

{
sections-command
sections—-command

}
Fach sections-command may of be one of the following:
e an ENTRY command (see Section 3.4.1 [Entry command], page 41)
e a symbol assignment (see Section 3.5 [Assignments|, page 47)
e an output section description

e an overlay description

The ENTRY command and symbol assignments are permitted inside the SECTIONS command
for convenience in using the location counter in those commands. This can also make the
linker script easier to understand because you can use those commands at meaningful points
in the layout of the output file.

Output section descriptions and overlay descriptions are described below.

If you do not use a SECTIONS command in your linker script, the linker will place each input
section into an identically named output section in the order that the sections are first
encountered in the input files. If all input sections are present in the first file, for example,
the order of sections in the output file will match the order in the first input file. The first
section will be at address zero.

3.6.1 Output Section Description

The full description of an output section looks like this:

section [address] [(type)] :
[AT(1ma)]
[ALIGN(section_align)]
[SUBALIGN (subsection_align)]
[constraint]
{
output-section-command
output-section-command

} [>region] [AT>lma_region] [:phdr :phdr ...] [=fillexp]

Most output sections do not use most of the optional section attributes.

The whitespace around section is required, so that the section name is unambiguous. The
colon and the curly braces are also required. The line breaks and other white space are
optional.

Chapter 3: Linker Scripts 51

Each output-section-command may be one of the following:
e a symbol assignment (see Section 3.5 [Assignments|, page 47)
e an input section description (see Section 3.6.4 [Input Section], page 52)
e data values to include directly (see Section 3.6.5 [Output Section Data], page 56)
e aspecial output section keyword (see Section 3.6.6 [Output Section Keywords], page 57)

3.6.2 Output Section Name

The name of the output section is section. section must meet the constraints of your output
format. In formats which only support a limited number of sections, such as a.out, the
name must be one of the names supported by the format (a.out, for example, allows only
‘.text’, ‘.data’ or ‘.bss’). If the output format supports any number of sections, but with
numbers and not names (as is the case for Oasys), the name should be supplied as a quoted
numeric string. A section name may consist of any sequence of characters, but a name
which contains any unusual characters such as commas must be quoted.

The output section name ‘/DISCARD/’ is special; Section 3.6.7 [Output Section Discarding],
page 58.

3.6.3 Output Section Address

The address is an expression for the VMA (the virtual memory address) of the output
section. This address is optional, but if it is provided then the output address will be set
exactly as specified.

If the output address is not specified then one will be chosen for the section, based on
the heuristic below. This address will be adjusted to fit the alignment requirement of the
output section. The alignment requirement is the strictest alignment of any input section
contained within the output section.

The output section address heuristic is as follows:

e If an output memory region is set for the section then it is added to this region and its
address will be the next free address in that region.

e If the MEMORY command has been used to create a list of memory regions then the
first region which has attributes compatible with the section is selected to contain it.
The section’s output address will be the next free address in that region; Section 3.7
[MEMORY], page 62.

e If no memory regions were specified, or none match the section then the output address
will be based on the current value of the location counter.

For example:
.text . ¢ { *(.text) }

and
.text : { *(.text) }

are subtly different. The first will set the address of the ‘.text’ output section to the
current value of the location counter. The second will set it to the current value of the
location counter aligned to the strictest alignment of any of the ‘.text’ input sections.
The address may be an arbitrary expression; Section 3.10 [Expressions|, page 69. For
example, if you want to align the section on a 0x10 byte boundary, so that the lowest four
bits of the section address are zero, you could do something like this:

52 The GNU linker

.text ALIGN(0x10) : { *(.text) }

This works because ALIGN returns the current location counter aligned upward to the spec-
ified value.

Specifying address for a section will change the value of the location counter, provided that
the section is non-empty. (Empty sections are ignored).

3.6.4 Input Section Description

The most common output section command is an input section description.

The input section description is the most basic linker script operation. You use output
sections to tell the linker how to lay out your program in memory. You use input section
descriptions to tell the linker how to map the input files into your memory layout.

3.6.4.1 Input Section Basics

An input section description consists of a file name optionally followed by a list of section
names in parentheses.

The file name and the section name may be wildcard patterns, which we describe further
below (see Section 3.6.4.2 [Input Section Wildcards], page 53).

The most common input section description is to include all input sections with a particular
name in the output section. For example, to include all input ‘.text’ sections, you would
write:

*(.text)

Here the ‘*’ is a wildcard which matches any file name. To exclude a list of files from
matching the file name wildcard, EXCLUDE_FILE may be used to match all files except
the ones specified in the EXCLUDE_FILE list. For example:

* (EXCLUDE_FILE (*crtend.o *otherfile.o) .ctors)

will cause all .ctors sections from all files except ‘crtend.o’ and ‘otherfile.o’ to be in-
cluded.

There are two ways to include more than one section:

x(.text .rdata)

*(.text) *(.rdata)
The difference between these is the order in which the ‘.text’ and ‘.rdata’ input sections
will appear in the output section. In the first example, they will be intermingled, appearing
in the same order as they are found in the linker input. In the second example, all ‘. text’
input sections will appear first, followed by all ‘.rdata’ input sections.

You can specify a file name to include sections from a particular file. You would do this if
one or more of your files contain special data that needs to be at a particular location in
memory. For example:

data.o(.data)

To refine the sections that are included based on the section flags of an input section,
INPUT_SECTION_FLAGS may be used.

Here is a simple example for using Section header flags for ELF sections:

SECTIONS {
.text : { INPUT_SECTION_FLAGS (SHF_MERGE & SHF_STRINGS) *(.text) }
.text2 : { INPUT_SECTION_FLAGS (!SHF_WRITE) *(.text) }

}

Chapter 3: Linker Scripts 53

In this example, the output section ‘. text’ will be comprised of any input section matching
the name *(.text) whose section header flags SHF_MERGE and SHF_STRINGS are set. The
output section ‘.text2’ will be comprised of any input section matching the name *(.text)
whose section header flag SHF_WRITE is clear.

You can also specify files within archives by writing a pattern matching the archive, a colon,
then the pattern matching the file, with no whitespace around the colon.

‘archive:file’
matches file within archive

‘archive:’
matches the whole archive

‘:file’ matches file but not one in an archive

Either one or both of ‘archive’ and ‘file’ can contain shell wildcards. On DOS based file
systems, the linker will assume that a single letter followed by a colon is a drive specifier,
so ‘c:myfile.o’ is a simple file specification, not ‘myfile.o’ within an archive called ‘c’.
‘archive:file’ filespecs may also be used within an EXCLUDE_FILE list, but may not appear
in other linker script contexts. For instance, you cannot extract a file from an archive by
using ‘archive:file’ in an INPUT command.

If you use a file name without a list of sections, then all sections in the input file will
be included in the output section. This is not commonly done, but it may by useful on
occasion. For example:

data.o

When you use a file name which is not an ‘archive:file’ specifier and does not contain
any wild card characters, the linker will first see if you also specified the file name on the
linker command line or in an INPUT command. If you did not, the linker will attempt to
open the file as an input file, as though it appeared on the command line. Note that this
differs from an INPUT command, because the linker will not search for the file in the archive
search path.

3.6.4.2 Input Section Wildcard Patterns

In an input section description, either the file name or the section name or both may be
wildcard patterns.

The file name of ‘*’ seen in many examples is a simple wildcard pattern for the file name.
The wildcard patterns are like those used by the Unix shell.
£ matches any number of characters

e matches any single character

‘[chars]’ matches a single instance of any of the chars; the ‘=’ character may be used to
specify a range of characters, as in ‘[a-z]’ to match any lower case letter

A\ quotes the following character

When a file name is matched with a wildcard, the wildcard characters will not match a ‘/’
character (used to separate directory names on Unix). A pattern consisting of a single ‘*’
character is an exception; it will always match any file name, whether it contains a ‘/’ or
not. In a section name, the wildcard characters will match a ¢/’ character.

54 The GNU linker

File name wildcard patterns only match files which are explicitly specified on the command
line or in an INPUT command. The linker does not search directories to expand wildcards.

If a file name matches more than one wildcard pattern, or if a file name appears explicitly
and is also matched by a wildcard pattern, the linker will use the first match in the linker
script. For example, this sequence of input section descriptions is probably in error, because
the ‘data.o’ rule will not be used:

.data : { *(.data) }

.datal : { data.o(.data) }
Normally, the linker will place files and sections matched by wildcards in the order in which
they are seen during the link. You can change this by using the SORT_BY_NAME keyword,
which appears before a wildcard pattern in parentheses (e.g., SORT_BY_NAME(.text*)).
When the SORT_BY_NAME keyword is used, the linker will sort the files or sections into
ascending order by name before placing them in the output file.

SORT_BY_ALIGNMENT is very similar to SORT_BY_NAME. The difference is SORT_BY_ALIGNMENT
will sort sections into ascending order by alignment before placing them in the output file.

SORT_BY_INIT_PRIORITY is very similar to SORT_BY_NAME. The difference is SORT_BY_INIT_
PRIORITY will sort sections into ascending order by numerical value of the GCC init_priority
attribute encoded in the section name before placing them in the output file.

SORT is an alias for SORT_BY_NAME.
When there are nested section sorting commands in linker script, there can be at most 1
level of nesting for section sorting commands.
1. SORT_BY_NAME (SORT_BY_ALIGNMENT (wildcard section pattern)). It will sort the input
sections by name first, then by alignment if 2 sections have the same name.
2. SORT_BY_ALIGNMENT (SORT_BY_NAME (wildcard section pattern)). It will sort the input
sections by alignment first, then by name if 2 sections have the same alignment.
3. SORT_BY_NAME (SORT_BY_NAME (wildcard section pattern)) is treated the same as SORT_
BY_NAME (wildcard section pattern).
4. SORT_BY_ALIGNMENT (SORT_BY_ALIGNMENT (wildcard section pattern)) is treated the
same as SORT_BY_ALIGNMENT (wildcard section pattern).

5. All other nested section sorting commands are invalid.

When both command line section sorting option and linker script section sorting command
are used, section sorting command always takes precedence over the command line option.

If the section sorting command in linker script isn’t nested, the command line option will
make the section sorting command to be treated as nested sorting command.

1. SORT_BY_NAME (wildcard section pattern) with ‘--sort-sections alignment’ is equiv-
alent to SORT_BY_NAME (SORT_BY_ALIGNMENT (wildcard section pattern)).

2. SORT_BY_ALIGNMENT (wildcard section pattern) with ‘--sort-section name’ is equiv-
alent to SORT_BY_ALIGNMENT (SORT_BY_NAME (wildcard section pattern)).

If the section sorting command in linker script is nested, the command line option will be
ignored.
If you ever get confused about where input sections are going, use the ‘-M’ linker option to
generate a map file. The map file shows precisely how input sections are mapped to output
sections.

Chapter 3: Linker Scripts 55

This example shows how wildcard patterns might be used to partition files. This linker
script directs the linker to place all ‘.text’ sections in ‘.text’ and all ‘.bss’ sections in
‘.bss’. The linker will place the ‘.data’ section from all files beginning with an upper case
character in ‘.DATA’; for all other files, the linker will place the ‘.data’ section in ‘.data’.

SECTIONS {
.text : { *(.text) }
.DATA : { [A-Z]x(.data) }
.data : { *(.data) }
.bss : { *(.bss) }

}

3.6.4.3 Input Section for Common Symbols

A special notation is needed for common symbols, because in many object file formats
common symbols do not have a particular input section. The linker treats common symbols
as though they are in an input section named ‘COMMON’.

You may use file names with the ‘COMMON’ section just as with any other input sections.
You can use this to place common symbols from a particular input file in one section while
common symbols from other input files are placed in another section.

In most cases, common symbols in input files will be placed in the ‘.bss’ section in the
output file. For example:
.bss { *(.bss) *(COMMON) }

Some object file formats have more than one type of common symbol. For example, the
MIPS ELF object file format distinguishes standard common symbols and small common
symbols. In this case, the linker will use a different special section name for other types of
common symbols. In the case of MIPS ELF, the linker uses ‘COMMON’ for standard common
symbols and ‘.scommon’ for small common symbols. This permits you to map the different
types of common symbols into memory at different locations.

You will sometimes see ‘[COMMON]’ in old linker scripts. This notation is now considered
obsolete. It is equivalent to ‘*x (COMMON)’.

3.6.4.4 Input Section and Garbage Collection

When link-time garbage collection is in use (‘--gc-sections’), it is often useful to mark sec-
tions that should not be eliminated. This is accomplished by surrounding an input section’s
wildcard entry with KEEP(), as in KEEP(*(.init)) or KEEP(SORT_BY_NAME(*) (.ctors)).

3.6.4.5 Input Section Example

The following example is a complete linker script. It tells the linker to read all of the
sections from file ‘all.o’ and place them at the start of output section ‘outputa’ which
starts at location ‘0x10000’. All of section ‘. inputl’ from file ‘foo.o’ follows immediately,
in the same output section. All of section ‘.input2’ from ‘foo.o’ goes into output section
‘outputb’, followed by section ‘.inputl’ from ‘fool.0’. All of the remaining ‘.inputl’ and
‘.input?2’ sections from any files are written to output section ‘outputc’.

SECTIONS {
outputa 0x10000 :
{
all.o
foo.o (.inputl)
}

56 The GNU linker

outputb :
{
foo.o (.input2)
fool.o (.inputl)
}

outputc :
{
*(.inputl)
*(.input2)
}

}

3.6.5 Output Section Data

You can include explicit bytes of data in an output section by using BYTE, SHORT, LONG,
QUAD, or SQUAD as an output section command. Each keyword is followed by an expression
in parentheses providing the value to store (see Section 3.10 [Expressions|, page 69). The
value of the expression is stored at the current value of the location counter.

The BYTE, SHORT, LONG, and QUAD commands store one, two, four, and eight bytes (respec-
tively). After storing the bytes, the location counter is incremented by the number of bytes
stored.

For example, this will store the byte 1 followed by the four byte value of the symbol ‘addr’:
BYTE(1)
LONG (addr)
When using a 64 bit host or target, QUAD and SQUAD are the same; they both store an 8
byte, or 64 bit, value. When both host and target are 32 bits, an expression is computed as
32 bits. In this case QUAD stores a 32 bit value zero extended to 64 bits, and SQUAD stores
a 32 bit value sign extended to 64 bits.

If the object file format of the output file has an explicit endianness, which is the normal
case, the value will be stored in that endianness. When the object file format does not have
an explicit endianness, as is true of, for example, S-records, the value will be stored in the
endianness of the first input object file.

Note—these commands only work inside a section description and not between them, so
the following will produce an error from the linker:
SECTIONS { .text : { *(.text) } LONG(1) .data : { *(.data) } }

whereas this will work:
SECTIONS { .text : { *(.text) ; LONG(1) } .data : { *(.data) } }

You may use the FILL command to set the fill pattern for the current section. It is followed
by an expression in parentheses. Any otherwise unspecified regions of memory within the
section (for example, gaps left due to the required alignment of input sections) are filled
with the value of the expression, repeated as necessary. A FILL statement covers memory
locations after the point at which it occurs in the section definition; by including more
than one FILL statement, you can have different fill patterns in different parts of an output
section.

This example shows how to fill unspecified regions of memory with the value ‘0x90’:
FILL(0x90909090)

The FILL command is similar to the ‘=fillexp’ output section attribute, but it only affects
the part of the section following the FILL command, rather than the entire section. If both

Chapter 3: Linker Scripts 57

are used, the FILL command takes precedence. See Section 3.6.8.8 [Output Section Fill],
page 61, for details on the fill expression.

3.6.6 Output Section Keywords

There are a couple of keywords which can appear as output section commands.

CREATE_OBJECT_SYMBOLS
The command tells the linker to create a symbol for each input file. The name
of each symbol will be the name of the corresponding input file. The section of
each symbol will be the output section in which the CREATE_OBJECT_SYMBOLS
command appears.

This is conventional for the a.out object file format. It is not normally used for
any other object file format.

CONSTRUCTORS

When linking using the a.out object file format, the linker uses an unusual set
construct to support C++ global constructors and destructors. When linking
object file formats which do not support arbitrary sections, such as ECOFF
and XCOFF, the linker will automatically recognize C++ global constructors
and destructors by name. For these object file formats, the CONSTRUCTORS
command tells the linker to place constructor information in the output section
where the CONSTRUCTORS command appears. The CONSTRUCTORS command is
ignored for other object file formats.

The symbol __CTOR_LIST__ marks the start of the global constructors, and
the symbol __CTOR_END__ marks the end. Similarly, __DTOR_LIST__ and
__DTOR_END__ mark the start and end of the global destructors. The first
word in the list is the number of entries, followed by the address of each
constructor or destructor, followed by a zero word. The compiler must arrange
to actually run the code. For these object file formats GNU C++ normally
calls constructors from a subroutine __main; a call to __main is automatically
inserted into the startup code for main. GNU C++ normally runs destructors

either by using atexit, or directly from the function exit.

For object file formats such as COFF or ELF which support arbitrary section
names, GNU C++ will normally arrange to put the addresses of global construc-
tors and destructors into the .ctors and .dtors sections. Placing the following
sequence into your linker script will build the sort of table which the GNU C++
runtime code expects to see.

__CTOR_LIST__ = .;

LONG((__CTOR_END__ - __CTOR_LIST__) / 4 - 2)
*(.ctors)

LONG (0)

__CTOR_END = .3

DTOR_LIST__ = .;

LONG((__DTOR_END__ - __DTOR_LIST__) / 4 - 2)
*(.dtors)

LONG(0)

__DTOR_END__ = .;

If you are using the GNU C++ support for initialization priority, which
provides some control over the order in which global constructors are

58 The GNU linker

run, you must sort the constructors at link time to ensure that they are
executed in the correct order. When using the CONSTRUCTORS command, use
‘SORT_BY_NAME (CONSTRUCTORS)’ instead. When using the .ctors and .dtors
sections, use ‘*x(SORT_BY_NAME(.ctors))’ and ‘*(SORT_BY_NAME(.dtors))’
instead of just ‘*(.ctors)’ and ‘*(.dtors)’.

Normally the compiler and linker will handle these issues automatically, and
you will not need to concern yourself with them. However, you may need to
consider this if you are using C++ and writing your own linker scripts.

3.6.7 Output Section Discarding

The linker will not create output sections with no contents. This is for convenience when
referring to input sections that may or may not be present in any of the input files. For
example:

.foo : { *(.foo) }

will only create a ‘.foo’ section in the output file if there is a ‘.foo’ section in at least
one input file, and if the input sections are not all empty. Other link script directives that
allocate space in an output section will also create the output section.

The linker will ignore address assignments (see Section 3.6.3 [Output Section Address],
page 51) on discarded output sections, except when the linker script defines symbols in the
output section. In that case the linker will obey the address assignments, possibly advancing
dot even though the section is discarded.

The special output section name ‘/DISCARD/’ may be used to discard input sections. Any
input sections which are assigned to an output section named ‘/DISCARD/’ are not included
in the output file.

3.6.8 Output Section Attributes

We showed above that the full description of an output section looked like this:

section [address] [(type)] :
[AT (1ma)]
[ALIGN(section_align)]
[SUBALIGN (subsection_align)]
[constraint]
{
output-section-command
output-section-command

} [>region] [AT>lma_region] [:phdr :phdr ...] [=fillexp]

We've already described section, address, and output-section-command. In this section we
will describe the remaining section attributes.

3.6.8.1 Output Section Type

Each output section may have a type. The type is a keyword in parentheses. The following
types are defined:

NOLOAD The section should be marked as not loadable, so that it will not be loaded into
memory when the program is run.

Chapter 3: Linker Scripts 59

DSECT

COPY

INFO

OVERLAY These type names are supported for backward compatibility, and are rarely
used. They all have the same effect: the section should be marked as not
allocatable, so that no memory is allocated for the section when the program
is run.

The linker normally sets the attributes of an output section based on the input sections
which map into it. You can override this by using the section type. For example, in the
script sample below, the ‘ROM’ section is addressed at memory location ‘0’ and does not
need to be loaded when the program is run.

SECTIONS {
ROM 0 (NOLOAD) : { ... }

.

3.6.8.2 Output Section LMA

Every section has a virtual address (VMA) and a load address (LMA); see Section 3.1 [Basic
Script Concepts], page 39. The virtual address is specified by the see Section 3.6.3 [Output
Section Address|, page 51 described earlier. The load address is specified by the AT or AT>
keywords. Specifying a load address is optional.

The AT keyword takes an expression as an argument. This specifies the exact load address
of the section. The AT> keyword takes the name of a memory region as an argument. See
Section 3.7 [MEMORY], page 62. The load address of the section is set to the next free
address in the region, aligned to the section’s alignment requirements.

If neither AT nor AT> is specified for an allocatable section, the linker will use the following
heuristic to determine the load address:

e If the section has a specific VMA address, then this is used as the LMA address as
well.

e If the section is not allocatable then its LMA is set to its VMA.

e Otherwise if a memory region can be found that is compatible with the current section,
and this region contains at least one section, then the LMA is set so the difference
between the VMA and LMA is the same as the difference between the VMA and LMA
of the last section in the located region.

e If no memory regions have been declared then a default region that covers the entire
address space is used in the previous step.

e If no suitable region could be found, or there was no previous section then the LMA is
set equal to the VMA.

This feature is designed to make it easy to build a ROM image. For example, the following
linker script creates three output sections: one called ‘.text’, which starts at 0x1000, one
called ‘.mdata’, which is loaded at the end of the ‘.text’ section even though its VMA is
0x2000, and one called ‘.bss’ to hold uninitialized data at address 0x3000. The symbol
_data is defined with the value 0x2000, which shows that the location counter holds the
VMA value, not the LMA value.

60 The GNU linker

SECTIONS
{
.text 0x1000 : { *(.text) _etext = . ; }
.mdata 0x2000 :
AT (ADDR (.text) + SIZEOF (.text))

{ _data = . ; *(.data); _edata = . ; }
.bss 0x3000 :
{ _bstart = . ; =*(.bss) *(COMMON) ; _bend = . ;}

}
The run-time initialization code for use with a program generated with this linker script
would include something like the following, to copy the initialized data from the ROM image
to its runtime address. Notice how this code takes advantage of the symbols defined by the
linker script.

extern char _etext, _data, _edata, _bstart, _bend;
char *src &_etext;
char *dst &_data;

/* ROM has data at end of text; copy it. */
while (dst < &_edata)
*dst++ = *src++;

/% Zero bss. */
for (dst = &_bstart; dst< &_bend; dst++)
*dst = 0;

3.6.8.3 Forced Output Alignment

You can increase an output section’s alignment by using ALIGN.

3.6.8.4 Forced Input Alignment

You can force input section alignment within an output section by using SUBALIGN. The
value specified overrides any alignment given by input sections, whether larger or smaller.

3.6.8.5 Output Section Constraint

You can specify that an output section should only be created if all of its input sections are
read-only or all of its input sections are read-write by using the keyword ONLY_IF_RO and
ONLY_IF_RW respectively.

3.6.8.6 Output Section Region

You can assign a section to a previously defined region of memory by using ‘>region’. See
Section 3.7 [MEMORY], page 62.

Here is a simple example:

MEMORY { rom : ORIGIN = 0x1000, LENGTH = 0x1000 }
SECTIONS { ROM : { *(.text) } >rom }

3.6.8.7 Output Section Phdr

You can assign a section to a previously defined program segment by using ‘:phdr’. See
Section 3.8 [PHDRS], page 64. If a section is assigned to one or more segments, then all
subsequent allocated sections will be assigned to those segments as well, unless they use an
explicitly :phdr modifier. You can use :NONE to tell the linker to not put the section in
any segment at all.

Chapter 3: Linker Scripts 61

Here is a simple example:

PHDRS { text PT_LOAD ; }
SECTIONS { .text : { *(.text) } :text }

3.6.8.8 Output Section Fill

You can set the fill pattern for an entire section by using ‘=fillexp’. fillexp is an expression
(see Section 3.10 [Expressions|, page 69). Any otherwise unspecified regions of memory
within the output section (for example, gaps left due to the required alignment of input
sections) will be filled with the value, repeated as necessary. If the fill expression is a simple
hex number, ie. a string of hex digit starting with ‘0x’ and without a trailing ‘k’ or ‘M’, then
an arbitrarily long sequence of hex digits can be used to specify the fill pattern; Leading
zeros become part of the pattern too. For all other cases, including extra parentheses or a
unary +, the fill pattern is the four least significant bytes of the value of the expression. In
all cases, the number is big-endian.

You can also change the fill value with a FILL command in the output section commands;
(see Section 3.6.5 [Output Section Data|, page 56).

Here is a simple example:
SECTIONS { .text : { *(.text) } =0x90909090 }

3.6.9 Overlay Description

An overlay description provides an easy way to describe sections which are to be loaded
as part of a single memory image but are to be run at the same memory address. At
run time, some sort of overlay manager will copy the overlaid sections in and out of the
runtime memory address as required, perhaps by simply manipulating addressing bits. This
approach can be useful, for example, when a certain region of memory is faster than another.

Overlays are described using the OVERLAY command. The OVERLAY command is used within
a SECTIONS command, like an output section description. The full syntax of the OVERLAY
command is as follows:

OVERLAY [start] : [NOCROSSREFS] [AT (ldaddr)]
{

secnamel

{
output-section-command
output-section-command

} [:phdr...] [=fill]
secname2
{
output-section-command
output-section-command

} k;éhdr...] [=fil1]

} [>region] [:phdr...] [=fill]
Everything is optional except OVERLAY (a keyword), and each section must have a name
(secnamel and secname2 above). The section definitions within the OVERLAY construct
are identical to those within the general SECTIONS contruct (see Section 3.6 [SECTIONS],
page 50), except that no addresses and no memory regions may be defined for sections
within an OVERLAY.

62 The GNU linker

The sections are all defined with the same starting address. The load addresses of the
sections are arranged such that they are consecutive in memory starting at the load address
used for the OVERLAY as a whole (as with normal section definitions, the load address is
optional, and defaults to the start address; the start address is also optional, and defaults
to the current value of the location counter).

If the NOCROSSREFS keyword is used, and there any references among the sections, the linker
will report an error. Since the sections all run at the same address, it normally does not
make sense for one section to refer directly to another. See Section 3.4.5 [Miscellaneous
Commands]|, page 46.

For each section within the OVERLAY, the linker automatically provides two symbols. The
symbol __load_start_secname is defined as the starting load address of the section. The
symbol __load_stop_secname is defined as the final load address of the section. Any
characters within secname which are not legal within C identifiers are removed. C (or
assembler) code may use these symbols to move the overlaid sections around as necessary.

At the end of the overlay, the value of the location counter is set to the start address of the
overlay plus the size of the largest section.

Here is an example. Remember that this would appear inside a SECTIONS construct.

OVERLAY 0x1000 : AT (0x4000)
{
.text0 { ol/*.0(.text) }
.textl { o02/*.0(.text) }
}
This will define both ‘.text0’” and ‘.textl’ to start at address 0x1000. ‘.text0’ will
be loaded at address 0x4000, and ‘.text1’ will be loaded immediately after ‘.text0’. The
following symbols will be defined if referenced: __load_start_text0, __load_stop_textO,

__load_start_textl load_stop_textl.

- PRp—

P—

C code to copy overlay .textl into the overlay area might look like the following.
extern char __load_start_textl, __load_stop_textl;
memcpy ((char *) 0x1000, &__load_start_textl,
&__load_stop_textl - &__load_start_textl);
Note that the OVERLAY command is just syntactic sugar, since everything it does can be done
using the more basic commands. The above example could have been written identically as
follows.

.text0 0x1000 : AT (0x4000) { ol/*.o(.text) }

PROVIDE (__load_start_textO = LOADADDR (.text0));

PROVIDE (__load_stop_textO = LOADADDR (.textO) + SIZEOF (.text0));
.textl 0x1000 : AT (0x4000 + SIZEOF (.text0)) { o2/*.o(.text) }
PROVIDE (__load_start_textl = LOADADDR (.textl));

PROVIDE (__load_stop_textl = LOADADDR (.textl) + SIZEOF (.textl));
. = 0x1000 + MAX (SIZEOF (.text0), SIZEOF (.text1));

3.7 MEMORY Command

The linker’s default configuration permits allocation of all available memory. You can
override this by using the MEMORY command.

The MEMORY command describes the location and size of blocks of memory in the target.
You can use it to describe which memory regions may be used by the linker, and which
memory regions it must avoid. You can then assign sections to particular memory regions.

Chapter 3: Linker Scripts 63

The linker will set section addresses based on the memory regions, and will warn about
regions that become too full. The linker will not shuffle sections around to fit into the
available regions.

A linker script may contain at most one use of the MEMORY command. However, you can
define as many blocks of memory within it as you wish. The syntax is:

MEMORY
{
name [(attr)] : ORIGIN = origin, LENGTH = len

}

The name is a name used in the linker script to refer to the region. The region name
has no meaning outside of the linker script. Region names are stored in a separate name
space, and will not conflict with symbol names, file names, or section names. Each memory
region must have a distinct name within the MEMORY command. However you can add later
alias names to existing memory regions with the Section 3.4.4 [REGION_ALIAS]|, page 43
command.

The attr string is an optional list of attributes that specify whether to use a particular
memory region for an input section which is not explicitly mapped in the linker script. As
described in Section 3.6 [SECTIONS], page 50, if you do not specify an output section for
some input section, the linker will create an output section with the same name as the input
section. If you define region attributes, the linker will use them to select the memory region
for the output section that it creates.

The attr string must consist only of the following characters:

‘R’ Read-only section
W Read/write section
‘X Executable section
‘N Allocatable section
‘T Initialized section
‘v’ Same as ‘T’

Invert the sense of any of the attributes that follow

If a unmapped section matches any of the listed attributes other than ‘!’, it will be placed
in the memory region. The ‘!’ attribute reverses this test, so that an unmapped section
will be placed in the memory region only if it does not match any of the listed attributes.

The origin is an numerical expression for the start address of the memory region. The
expression must evaluate to a constant and it cannot involve any symbols. The keyword
ORIGIN may be abbreviated to org or o (but not, for example, ORG).

The len is an expression for the size in bytes of the memory region. As with the origin
expression, the expression must be numerical only and must evaluate to a constant. The
keyword LENGTH may be abbreviated to len or 1.

In the following example, we specify that there are two memory regions available for allo-
cation: one starting at ‘0’ for 256 kilobytes, and the other starting at ‘0x40000000’ for four
megabytes. The linker will place into the ‘rom” memory region every section which is not
explicitly mapped into a memory region, and is either read-only or executable. The linker

64 The GNU linker

will place other sections which are not explicitly mapped into a memory region into the
‘ram’ memory region.
MEMORY
{
rom (rx) : ORIGIN = 0, LENGTH = 256K
ram (!rx) : org = 0x40000000, 1 = 4M
}
Once you define a memory region, you can direct the linker to place specific output sections
into that memory region by using the ‘>region’ output section attribute. For example,
if you have a memory region named ‘mem’, you would use ‘>mem’ in the output section
definition. See Section 3.6.8.6 [Output Section Region|, page 60. If no address was specified
for the output section, the linker will set the address to the next available address within
the memory region. If the combined output sections directed to a memory region are too
large for the region, the linker will issue an error message.

It is possible to access the origin and length of a memory in an expression via the
ORIGIN (memory) and LENGTH(memory) functions:
_fstack = ORIGIN(ram) + LENGTH(ram) - 4;

3.8 PHDRS Command

The ELF object file format uses program headers, also knows as segments. The program
headers describe how the program should be loaded into memory. You can print them out
by using the objdump program with the ‘-p’ option.

When you run an ELF program on a native ELF system, the system loader reads the
program headers in order to figure out how to load the program. This will only work if the
program headers are set correctly. This manual does not describe the details of how the
system loader interprets program headers; for more information, see the ELF ABI.

The linker will create reasonable program headers by default. However, in some cases, you
may need to specify the program headers more precisely. You may use the PHDRS command
for this purpose. When the linker sees the PHDRS command in the linker script, it will not
create any program headers other than the ones specified.

The linker only pays attention to the PHDRS command when generating an ELF output file.
In other cases, the linker will simply ignore PHDRS.

This is the syntax of the PHDRS command. The words PHDRS, FILEHDR, AT, and FLAGS are
keywords.

PHDRS

{

name type [FILEHDR] [PHDRS] [AT (address) 1]
[FLAGS (flags)] ;

}
The name is used only for reference in the SECTIONS command of the linker script. It is not
put into the output file. Program header names are stored in a separate name space, and
will not conflict with symbol names, file names, or section names. Each program header
must have a distinct name. The headers are processed in order and it is usual for them to
map to sections in ascending load address order.

Certain program header types describe segments of memory which the system loader will
load from the file. In the linker script, you specify the contents of these segments by placing

Chapter 3: Linker Scripts 65

allocatable output sections in the segments. You use the ‘: phdr’ output section attribute to
place a section in a particular segment. See Section 3.6.8.7 [Output Section Phdr|, page 60.

It is normal to put certain sections in more than one segment. This merely implies that
one segment of memory contains another. You may repeat ‘:phdr’, using it once for each
segment which should contain the section.

If you place a section in one or more segments using ‘: phdr’, then the linker will place all
subsequent allocatable sections which do not specify ‘: phdr’ in the same segments. This is
for convenience, since generally a whole set of contiguous sections will be placed in a single
segment. You can use :NONE to override the default segment and tell the linker to not put
the section in any segment at all.

You may use the FILEHDR and PHDRS keywords after the program header type to further
describe the contents of the segment. The FILEHDR keyword means that the segment should
include the ELF file header. The PHDRS keyword means that the segment should include
the ELF program headers themselves. If applied to a loadable segment (PT_LOAD), all prior
loadable segments must have one of these keywords.

The type may be one of the following. The numbers indicate the value of the keyword.

PT_NULL (0)
Indicates an unused program header.

PT_LOAD (1)
Indicates that this program header describes a segment to be loaded from the
file.

PT_DYNAMIC (2)
Indicates a segment where dynamic linking information can be found.

PT_INTERP (3)
Indicates a segment where the name of the program interpreter may be found.

PT_NOTE (4)
Indicates a segment holding note information.

PT_SHLIB (5)
A reserved program header type, defined but not specified by the ELF ABI.

PT_PHDR (6)
Indicates a segment where the program headers may be found.

expression An expression giving the numeric type of the program header. This may be
used for types not defined above.

You can specify that a segment should be loaded at a particular address in memory by
using an AT expression. This is identical to the AT command used as an output section
attribute (see Section 3.6.8.2 [Output Section LMA], page 59). The AT command for a
program header overrides the output section attribute.

The linker will normally set the segment flags based on the sections which comprise the
segment. You may use the FLAGS keyword to explicitly specify the segment flags. The value
of flags must be an integer. It is used to set the p_flags field of the program header.

Here is an example of PHDRS. This shows a typical set of program headers used on a native
ELF system.

66 The GNU linker

PHDRS

{
headers PT_PHDR PHDRS ;
interp PT_INTERP ;
text PT_LOAD FILEHDR PHDRS ;
data PT_LOAD ;
dynamic PT_DYNAMIC ;

}
SECTIONS
{
. = SIZEOF_HEADERS;
.interp : { *(.interp) } :text :interp
.text : { *(.text) } :text
.rodata : { *(.rodata) } /* defaults to :text */
. = . + 0x1000; /* move to a new page in memory */
.data : { *(.data) } :data
.dynamic : { *(.dynamic) } :data :dynamic
}

3.9 VERSION Command

The linker supports symbol versions when using ELF. Symbol versions are only useful
when using shared libraries. The dynamic linker can use symbol versions to select a specific
version of a function when it runs a program that may have been linked against an earlier
version of the shared library.

You can include a version script directly in the main linker script, or you can supply the
version script as an implicit linker script. You can also use the ‘--version-script’ linker
option.

The syntax of the VERSION command is simply

VERSION { version-script-commands }

The format of the version script commands is identical to that used by Sun’s linker in Solaris
2.5. The version script defines a tree of version nodes. You specify the node names and
interdependencies in the version script. You can specify which symbols are bound to which
version nodes, and you can reduce a specified set of symbols to local scope so that they are
not globally visible outside of the shared library.

The easiest way to demonstrate the version script language is with a few examples.

VERS_1.1 {
global:
fool;
local:
oldx*;
originals;
news;

}s

Chapter 3: Linker Scripts 67

VERS_1.2 {
foo2;
} VERS_1.1;

VERS_2.0 {

barl; bar2;

extern "C++" {

ns::x;

"f(int, double)";

};
} VERS_1.2;

This example version script defines three version nodes. The first version node defined is
‘VERS_1.1’; it has no other dependencies. The script binds the symbol ‘fool’ to ‘VERS_1.1".
It reduces a number of symbols to local scope so that they are not visible outside of the
shared library; this is done using wildcard patterns, so that any symbol whose name begins
with ‘old’, ‘original’, or ‘new’ is matched. The wildcard patterns available are the same
as those used in the shell when matching filenames (also known as “globbing”). However,
if you specify the symbol name inside double quotes, then the name is treated as literal,
rather than as a glob pattern.

Next, the version script defines node ‘VERS_1.2’. This node depends upon ‘VERS_1.1’. The
script binds the symbol ‘f002’ to the version node ‘VERS_1.2’.

Finally, the version script defines node ‘VERS_2.0’. This node depends upon ‘VERS_1.2’.
The scripts binds the symbols ‘bar1’ and ‘bar2’ are bound to the version node ‘VERS_2.0’.

When the linker finds a symbol defined in a library which is not specifically bound to a
version node, it will effectively bind it to an unspecified base version of the library. You
can bind all otherwise unspecified symbols to a given version node by using ‘global: *;’
somewhere in the version script. Note that it’s slightly crazy to use wildcards in a global
spec except on the last version node. Global wildcards elsewhere run the risk of accidentally
adding symbols to the set exported for an old version. That’s wrong since older versions
ought to have a fixed set of symbols.

The names of the version nodes have no specific meaning other than what they might
suggest to the person reading them. The ‘2.0’ version could just as well have appeared in
between ‘1.1 and ‘1.2’. However, this would be a confusing way to write a version script.

Node name can be omitted, provided it is the only version node in the version script. Such
version script doesn’t assign any versions to symbols, only selects which symbols will be
globally visible out and which won’t.

{ global: foo; bar; local: *; I};

When you link an application against a shared library that has versioned symbols, the
application itself knows which version of each symbol it requires, and it also knows which
version nodes it needs from each shared library it is linked against. Thus at runtime, the
dynamic loader can make a quick check to make sure that the libraries you have linked
against do in fact supply all of the version nodes that the application will need to resolve
all of the dynamic symbols. In this way it is possible for the dynamic linker to know with
certainty that all external symbols that it needs will be resolvable without having to search
for each symbol reference.

The symbol versioning is in effect a much more sophisticated way of doing minor version
checking that SunOS does. The fundamental problem that is being addressed here is that

68 The GNU linker

typically references to external functions are bound on an as-needed basis, and are not
all bound when the application starts up. If a shared library is out of date, a required
interface may be missing; when the application tries to use that interface, it may suddenly
and unexpectedly fail. With symbol versioning, the user will get a warning when they start
their program if the libraries being used with the application are too old.

There are several GNU extensions to Sun’s versioning approach. The first of these is the
ability to bind a symbol to a version node in the source file where the symbol is defined
instead of in the versioning script. This was done mainly to reduce the burden on the library
maintainer. You can do this by putting something like:

asm__(".symver original_foo,foo@VERS_1.1");

in the C source file. This renames the function ‘original_foo’ to be an alias for ‘foo’
bound to the version node ‘VERS_1.1". The ‘local:’ directive can be used to prevent the
symbol ‘original_foo’ from being exported. A ‘.symver’ directive takes precedence over
a version script.

The second GNU extension is to allow multiple versions of the same function to appear in
a given shared library. In this way you can make an incompatible change to an interface
without increasing the major version number of the shared library, while still allowing
applications linked against the old interface to continue to function.

To do this, you must use multiple ‘. symver’ directives in the source file. Here is an example:

__asm__(".symver original_foo,foo@");

__asm__(".symver old_foo,foo@VERS_1.1");

__asm__(".symver old_fool,foo@VERS_1.2");

__asm__(".symver new_foo,foo@OVERS_2.0");
In this example, ‘foo@’ represents the symbol ‘foo’ bound to the unspecified base version
of the symbol. The source file that contains this example would define 4 C functions:
‘original_foo’, ‘old_foo’, ‘old_fool’, and ‘new_foo’.
When you have multiple definitions of a given symbol, there needs to be some way to specify
a default version to which external references to this symbol will be bound. You can do this
with the ‘foo@OVERS_2.0’ type of ‘.symver’ directive. You can only declare one version
of a symbol as the default in this manner; otherwise you would effectively have multiple
definitions of the same symbol.

If you wish to bind a reference to a specific version of the symbol within the shared library,
you can use the aliases of convenience (i.e., ‘01d_foo’), or you can use the ‘. symver’ directive
to specifically bind to an external version of the function in question.
You can also specify the language in the version script:

VERSION extern "lang" { version-script-commands }
The supported ‘lang’s are ‘C’, ‘C++’, and ‘Java’. The linker will iterate over the list of
symbols at the link time and demangle them according to ‘lang’ before matching them to
the patterns specified in ‘version-script-commands’. The default ‘lang’ is ‘C’.

Demangled names may contains spaces and other special characters. As described above,
you can use a glob pattern to match demangled names, or you can use a double-quoted
string to match the string exactly. In the latter case, be aware that minor differences (such
as differing whitespace) between the version script and the demangler output will cause a
mismatch. As the exact string generated by the demangler might change in the future,
even if the mangled name does not, you should check that all of your version directives are
behaving as you expect when you upgrade.

Chapter 3: Linker Scripts 69

3.10 Expressions in Linker Scripts

The syntax for expressions in the linker script language is identical to that of C expressions.
All expressions are evaluated as integers. All expressions are evaluated in the same size,
which is 32 bits if both the host and target are 32 bits, and is otherwise 64 bits.

You can use and set symbol values in expressions.

The linker defines several special purpose builtin functions for use in expressions.

3.10.1 Constants

All constants are integers.

As in C, the linker considers an integer beginning with ‘0’ to be octal, and an integer
beginning with ‘0x’ or ‘0X’ to be hexadecimal. Alternatively the linker accepts suffixes of
‘h’ or ‘H’ for hexadeciaml, ‘o’ or ‘0’ for octal, ‘b’ or ‘B’ for binary and ‘d’ or ‘D’ for decimal.
Any integer value without a prefix or a suffix is considered to be decimal.

In addition, you can use the suffixes K and M to scale a constant by 1024 or 1024” respectively.
For example, the following all refer to the same quantity:

_fourk_1 = 4K;
_fourk_2 = 4096;
_fourk_3 = 0x1000;
_fourk_4 = 100000;

Note - the K and M suffixes cannot be used in conjunction with the base suffixes mentioned
above.

3.10.2 Symbolic Constants

It is possible to refer to target specific constants via the use of the CONSTANT (name) operator,
where name is one of:

MAXPAGESIZE
The target’s maximum page size.

COMMONPAGESIZE
The target’s default page size.

So for example:
.text ALIGN (CONSTANT (MAXPAGESIZE)) : { *(.text) }

will create a text section aligned to the largest page boundary supported by the target.

3.10.3 Symbol Names

Unless quoted, symbol names start with a letter, underscore, or period and may include
letters, digits, underscores, periods, and hyphens. Unquoted symbol names must not conflict
with any keywords. You can specify a symbol which contains odd characters or has the
same name as a keyword by surrounding the symbol name in double quotes:

"SECTION" = 9;

"with a space" = "also with a space" + 10;
Since symbols can contain many non-alphabetic characters, it is safest to delimit symbols
with spaces. For example, ‘A-B’ is one symbol, whereas ‘A - B’ is an expression involving
subtraction.

70 The GNU linker

3.10.4 Orphan Sections

Orphan sections are sections present in the input files which are not explicitly placed into the
output file by the linker script. The linker will still copy these sections into the output file,
but it has to guess as to where they should be placed. The linker uses a simple heuristic
to do this. It attempts to place orphan sections after non-orphan sections of the same
attribute, such as code vs data, loadable vs non-loadable, etc. If there is not enough room
to do this then it places at the end of the file.

For ELF targets, the attribute of the section includes section type as well as section flag.

If an orphaned section’s name is representable as a C identifier then the linker will au-
tomatically see Section 3.5.2 [PROVIDE], page 48 two symbols: __start_SECNAME and
__end_SECNAME, where SECNAME is the name of the section. These indicate the start
address and end address of the orphaned section respectively. Note: most section names
are not representable as C identifiers because they contain a ‘.’ character.

3.10.5 The Location Counter

The special linker variable dot ‘.’ always contains the current output location counter. Since
the . always refers to a location in an output section, it may only appear in an expression
within a SECTIONS command. The . symbol may appear anywhere that an ordinary symbol
is allowed in an expression.

Assigning a value to . will cause the location counter to be moved. This may be used
to create holes in the output section. The location counter may not be moved backwards
inside an output section, and may not be moved backwards outside of an output section if
so doing creates areas with overlapping LMAs.

SECTIONS

{
output :
{
filel(.text)
. = . + 1000;
file2(.text)
. += 1000;
file3(.text)
} = 0x12345678;
}

In the previous example, the ‘. text’ section from ‘filel’ is located at the beginning of the
output section ‘output’. It is followed by a 1000 byte gap. Then the ‘.text’ section from
‘file2’ appears, also with a 1000 byte gap following before the ‘. text’ section from ‘file3’.
The notation ‘= 0x12345678’ specifies what data to write in the gaps (see Section 3.6.8.8
[Output Section Fill], page 61).

Note: . actually refers to the byte offset from the start of the current containing object.
Normally this is the SECTIONS statement, whose start address is 0, hence . can be used as
an absolute address. If . is used inside a section description however, it refers to the byte
offset from the start of that section, not an absolute address. Thus in a script like this:

SECTIONS
{
. = 0x100
.text: {
*(.text)

Chapter 3: Linker Scripts 71

. = 0x200

= 0x500
.data: {
*(.data)

. += 0x600

}

The ¢.text’ section will be assigned a starting address of 0x100 and a size of exactly 0x200
bytes, even if there is not enough data in the ‘.text’ input sections to fill this area. (If
there is too much data, an error will be produced because this would be an attempt to move
. backwards). The ‘.data’ section will start at 0x500 and it will have an extra 0x600 bytes
worth of space after the end of the values from the ‘.data’ input sections and before the
end of the ‘.data’ output section itself.

Setting symbols to the value of the location counter outside of an output section statement
can result in unexpected values if the linker needs to place orphan sections. For example,
given the following:

SECTIONS

{
start_of_text = . ;
.text: { *x(.text) }
end_of_text = . ;

start_of_data = . ;

.data: { *(.data) }

end_of_data = . ;

}

If the linker needs to place some input section, e.g. .rodata, not mentioned in the script,
it might choose to place that section between .text and .data. You might think the
linker should place .rodata on the blank line in the above script, but blank lines are of no
particular significance to the linker. As well, the linker doesn’t associate the above symbol
names with their sections. Instead, it assumes that all assignments or other statements
belong to the previous output section, except for the special case of an assignment to ..
Le., the linker will place the orphan .rodata section as if the script was written as follows:

SECTIONS
{

start_of_text = . ;
.text: { *(.text) }
end_of_text = . ;

start_of_data = . ;

.rodata: { *(.rodata) 2}

.data: { *(.data) }

end_of_data = . ;

}

This may or may not be the script author’s intention for the value of start_of_data. One
way to influence the orphan section placement is to assign the location counter to itself, as
the linker assumes that an assignment to . is setting the start address of a following output
section and thus should be grouped with that section. So you could write:

SECTIONS
{

start_of_text = . ;

72 The GNU linker

.text: { *(.text) }
end_of_text = . ;

start_of_data = . ;
.data: { *(.data) }
end_of_data = . ;

}
Now, the orphan .rodata section will be placed between end_of_text and start_of_data.
3.10.6 Operators

The linker recognizes the standard C set of arithmetic operators, with the standard bindings
and precedence levels:

Precedence | Associativity Operators

highest

1 left -7 1

2 left * [/ h

3 left + -

4 left >> <<

5 left == I= > < <= >=

6 left &

7 left |

8 left &&

9 left Il

10 right ?

11 right &= += -= x= /= I
lowest

T Prefix operators.
I See Section 3.5 [Assignments|, page 47.

3.10.7 Evaluation

The linker evaluates expressions lazily. It only computes the value of an expression when
absolutely necessary.

The linker needs some information, such as the value of the start address of the first section,
and the origins and lengths of memory regions, in order to do any linking at all. These
values are computed as soon as possible when the linker reads in the linker script.
However, other values (such as symbol values) are not known or needed until after storage
allocation. Such values are evaluated later, when other information (such as the sizes of
output sections) is available for use in the symbol assignment expression.

The sizes of sections cannot be known until after allocation, so assignments dependent upon
these are not performed until after allocation.

Some expressions, such as those depending upon the location counter ‘.’, must be evaluated
during section allocation.

If the result of an expression is required, but the value is not available, then an error results.
For example, a script like the following

Chapter 3: Linker Scripts 73

SECTIONS
{

.text 9+this_isnt_constant :
{ *(.text) }
¥

will cause the error message ‘non constant expression for initial address’.

3.10.8 The Section of an Expression

Addresses and symbols may be section relative, or absolute. A section relative symbol is
relocatable. If you request relocatable output using the ‘-r’ option, a further link operation
may change the value of a section relative symbol. On the other hand, an absolute symbol
will retain the same value throughout any further link operations.

Some terms in linker expressions are addresses. This is true of section relative symbols and
for builtin functions that return an address, such as ADDR, LOADADDR, ORIGIN and SEGMENT_
START. Other terms are simply numbers, or are builtin functions that return a non-address
value, such as LENGTH. One complication is that unless you set LD_FEATURE ("SANE_EXPR")
(see Section 3.4.5 [Miscellaneous Commands], page 46), numbers and absolute symbols are
treated differently depending on their location, for compatibility with older versions of 1d.
Expressions appearing outside an output section definition treat all numbers as absolute
addresses. Expressions appearing inside an output section definition treat absolute symbols
as numbers. If LD_FEATURE ("SANE_EXPR") is given, then absolute symbols and numbers
are simply treated as numbers everywhere.

In the following simple example,

SECTIONS
{
. = 0x100;
__executable_start = 0x100;
.data :
{
. = 0x10;
__data_start = 0x10;
*(.data)
}
}

both . and __executable_start are set to the absolute address 0x100 in the first two

assignments, then both . and __data_start are set to 0x10 relative to the .data section
in the second two assignments.

For expressions involving numbers, relative addresses and absolute addresses, 1d follows
these rules to evaluate terms:

e Unary operations on a relative address, and binary operations on two relative addresses
in the same section or between one relative address and a number, apply the operator
to the offset part of the address(es).

e Unary operations on an absolute address, and binary operations on one or more absolute
addresses or on two relative addresses not in the same section, first convert any non-
absolute term to an absolute address before applying the operator.

The result section of each sub-expression is as follows:

e An operation involving only numbers results in a number.

74 The GNU linker

e The result of comparisons, ‘&&” and ‘| |’ is also a number.

e The result of other binary arithmetic and logical operations on two relative addresses in
the same section or two absolute addresess (after above conversions) is also a number.

e The result of other operations on relative addresses or one relative address and a
number, is a relative address in the same section as the relative operand(s).

e The result of other operations on absolute addresses (after above conversions) is an
absolute address.

You can use the builtin function ABSOLUTE to force an expression to be absolute when it
would otherwise be relative. For example, to create an absolute symbol set to the address
of the end of the output section ‘.data’:

SECTIONS
{
.data : { *(.data) _edata = ABSOLUTE(.); }
}

If ‘ABSOLUTE’ were not used, ‘_edata’ would be relative to the ‘.data’ section.

Using LOADADDR also forces an expression absolute, since this particular builtin function
returns an absolute address.

3.10.9 Builtin Functions

The linker script language includes a number of builtin functions for use in linker script
expressions.

ABSOLUTE (exp)
Return the absolute (non-relocatable, as opposed to non-negative) value of the
expression exp. Primarily useful to assign an absolute value to a symbol within
a section definition, where symbol values are normally section relative. See
Section 3.10.8 [Expression Section], page 73.

ADDR(section)
Return the address (VMA) of the named section. Your script must previously
have defined the location of that section. In the following example, start_of _
output_1, symbol_1 and symbol_2 are assigned equivalent values, except that
symbol_1 will be relative to the .outputl section while the other two will be
absolute:
SECTIONS { ...

.outputl :

{
start_of_output_1 = ABSOLUTE(.);

}
.output :
{
symbol_1
symbol_2
Y
.

ADDR(.outputl);
start_of_output_1;

Chapter 3: Linker Scripts 75

ALIGN(align)

ALIGN(exp,align)
Return the location counter (.) or arbitrary expression aligned to the next
align boundary. The single operand ALIGN doesn’t change the value of the
location counter—it just does arithmetic on it. The two operand ALIGN allows
an arbitrary expression to be aligned upwards (ALIGN(align) is equivalent to
ALIGN(., align)).
Here is an example which aligns the output .data section to the next 0x2000
byte boundary after the preceding section and sets a variable within the section
to the next 0x8000 boundary after the input sections:

SECTIONS { ...
.data ALIGN(0x2000): {
*(.data)
variable = ALIGN(0x8000);
}
.t

The first use of ALIGN in this example specifies the location of a section be-
cause it is used as the optional address attribute of a section definition (see
Section 3.6.3 [Output Section Address|, page 51). The second use of ALIGN is
used to defines the value of a symbol.

The builtin function NEXT is closely related to ALIGN.

ALIGNOF (section)
Return the alignment in bytes of the named section, if that section has been
allocated. If the section has not been allocated when this is evaluated, the linker
will report an error. In the following example, the alignment of the .output
section is stored as the first value in that section.

SECTIONS{ ...
.output {
LONG (ALIGNOF (.output))

}
.}
BLOCK (exp)

This is a synonym for ALIGN, for compatibility with older linker scripts. It is
most often seen when setting the address of an output section.

DATA_SEGMENT_ALIGN(maxpagesize, commonpagesize)

This is equivalent to either

(ALIGN (maxpagesize) + (. & (maxpagesize - 1)))
or

(ALIGN (maxpagesize) + (. & (maxpagesize - commonpagesize)))
depending on whether the latter uses fewer commonpagesize sized pages for the
data segment (area between the result of this expression and DATA_SEGMENT_
END) than the former or not. If the latter form is used, it means commonpagesize
bytes of runtime memory will be saved at the expense of up to commonpagesize
wasted bytes in the on-disk file.

This expression can only be used directly in SECTIONS commands, not in any
output section descriptions and only once in the linker script. commonpagesize

76

The GNU linker

should be less or equal to maxpagesize and should be the system page size the
object wants to be optimized for (while still working on system page sizes up
to maxpagesize).
Example:

. = DATA_SEGMENT_ALIGN(0x10000, 0x2000);

DATA_SEGMENT_END (exp)

This defines the end of data segment for DATA_SEGMENT_ALIGN evaluation pur-
poses.
. = DATA_SEGMENT_END(.);

DATA_SEGMENT_RELRO_END (offset, exp)

This defines the end of the PT_GNU_RELRO segment when ‘-z relro’ option is
used. Second argument is returned. When ‘-z relro’ option is not present,
DATA_SEGMENT_RELRO_END does nothing, otherwise DATA_SEGMENT_ALIGN
is padded so that exp + offset is aligned to the most commonly used page
boundary for particular target. If present in the linker script, it must always
come in between DATA_SEGMENT_ALIGN and DATA_SEGMENT_END.

. = DATA_SEGMENT_RELRO_END(24, .);

DEFINED (symbol)

Return 1 if symbol is in the linker global symbol table and is defined before
the statement using DEFINED in the script, otherwise return 0. You can use
this function to provide default values for symbols. For example, the following
script fragment shows how to set a global symbol ‘begin’ to the first location
in the ‘.text’ section—but if a symbol called ‘begin’ already existed, its value
is preserved:

SECTIONS { ...
.text @ {
begin = DEFINED(begin) 7 begin : . ;

LENGTH (memory)

Return the length of the memory region named memory.

LOADADDR (section)

Return the absolute LMA of the named section. (see Section 3.6.8.2 [Output
Section LMA], page 59).

MAX (expl, exp2)

Returns the maximum of expl and exp2.

MIN(expl, exp2)

NEXT (exp)

Returns the minimum of expl and exp2.

Return the next unallocated address that is a multiple of exp. This function is
closely related to ALIGN (exp); unless you use the MEMORY command to define
discontinuous memory for the output file, the two functions are equivalent.

Chapter 3: Linker Scripts 7

ORIGIN(memory)
Return the origin of the memory region named memory.

SEGMENT_START (segment, default)
Return the base address of the named segment. If an explicit value has been
given for this segment (with a command-line ‘-T’ option) that value will be
returned; otherwise the value will be default. At present, the ‘-T’ command-
line option can only be used to set the base address for the “text”, “data”, and
“bss” sections, but you can use SEGMENT_START with any segment name.

SIZEQOF (section)
Return the size in bytes of the named section, if that section has been allocated.
If the section has not been allocated when this is evaluated, the linker will
report an error. In the following example, symbol_1 and symbol_2 are assigned
identical values:

SECTIONS{ ...
.output {
.start = . ;

.end = . ;

}
symbol_1
symbol_2
.}

.end - .start ;
SIZEOF (.output);

SIZEOF_HEADERS

sizeof_headers
Return the size in bytes of the output file’s headers. This is information which
appears at the start of the output file. You can use this number when setting
the start address of the first section, if you choose, to facilitate paging.

When producing an ELF output file, if the linker script uses the SIZEOF_
HEADERS builtin function, the linker must compute the number of program
headers before it has determined all the section addresses and sizes. If the
linker later discovers that it needs additional program headers, it will report an
error ‘not enough room for program headers’. To avoid this error, you must
avoid using the SIZEOF_HEADERS function, or you must rework your linker script
to avoid forcing the linker to use additional program headers, or you must de-
fine the program headers yourself using the PHDRS command (see Section 3.8
[PHDRS], page 64).

3.11 Implicit Linker Scripts

If you specify a linker input file which the linker can not recognize as an object file or an
archive file, it will try to read the file as a linker script. If the file can not be parsed as a
linker script, the linker will report an error.

An implicit linker script will not replace the default linker script.

Typically an implicit linker script would contain only symbol assignments, or the INPUT,
GROUP, or VERSION commands.

Any input files read because of an implicit linker script will be read at the position in the
command line where the implicit linker script was read. This can affect archive searching.

Chapter 4: Machine Dependent Features 79

4 Machine Dependent Features

1d has additional features on some platforms; the following sections describe them. Ma-
chines where 1d has no additional functionality are not listed.

4.1 1d and the H8/300

For the H8/300, 1d can perform these global optimizations when you specify the ‘--relax’
command-line option.

relaring address modes
14 finds all jsr and jmp instructions whose targets are within eight bits, and
turns them into eight-bit program-counter relative bsr and bra instructions,
respectively.

synthesizing instructions
1d finds all mov.b instructions which use the sixteen-bit absolute address form,
but refer to the top page of memory, and changes them to use the eight-bit
address form. (That is: the linker turns ‘mov.b @aa:16’ into ‘mov.b Qaa:8’
whenever the address aa is in the top page of memory).

bit manipulation instructions
1d finds all bit manipulation instructions like band, bclr, biand, bild,
bior, bist, bixor, bld, bnot, bor, bset, bst, btst, bxor which use 32
bit and 16 bit absolute address form, but refer to the top page of memory, and
changes them to use the 8 bit address form. (That is: the linker turns ‘bset
#xx:3,0aa:32" into ‘bset #xx:3,0aa:8 whenever the address aa is in the
top page of memory).

system control instructions
1d finds all 1dc.w, stc.w instructions which use the 32 bit absolute address
form, but refer to the top page of memory, and changes them to use 16 bit
address form. (That is: the linker turns ‘ldc.w @aa:32,ccr’ into ‘ldc.w
@aa:16,ccr’ whenever the address aa is in the top page of memory).

4.2 1d and the Intel 960 Family

You can use the ‘~Aarchitecture’ command line option to specify one of the two-letter
names identifying members of the 960 family; the option specifies the desired output target,
and warns of any incompatible instructions in the input files. It also modifies the linker’s
search strategy for archive libraries, to support the use of libraries specific to each particular
architecture, by including in the search loop names suffixed with the string identifying the
architecture.

For example, if your 1d command line included ‘-ACA’ as well as ‘-1try’, the linker would
look (in its built-in search paths, and in any paths you specify with ‘~L’) for a library with
the names

try

libtry.a

tryca

libtryca.a

80 The GNU linker

The first two possibilities would be considered in any event; the last two are due to the use
of ‘“—=ACA’.

You can meaningfully use ‘-~A” more than once on a command line, since the 960 architecture
family allows combination of target architectures; each use will add another pair of name
variants to search for when ‘-1’ specifies a library.

4

1d supports the ‘--relax’ option for the i960 family. If you specify ‘--relax’, 1d finds
all balx and calx instructions whose targets are within 24 bits, and turns them into 24-
bit program-counter relative bal and cal instructions, respectively. 1d also turns cal
instructions into bal instructions when it determines that the target subroutine is a leaf
routine (that is, the target subroutine does not itself call any subroutines).

The ‘--fix-cortex-a8’ switch enables a link-time workaround for an erratum in certain
Cortex-A8 processors. The workaround is enabled by default if you are targeting the ARM
v7-A architecture profile. It can be enabled otherwise by specifying ‘--fix-cortex-a8’, or
disabled unconditionally by specifying ‘--no-fix-cortex-a8’.

The erratum only affects Thumb-2 code. Please contact ARM for further details.

The ‘--no-merge-exidx-entries’ switch disables the merging of adjacent exidx entries in
debuginfo.

4.3 1d and the Motorola 68HC11 and 68HC12 families

4.3.1 Linker Relaxation

For the Motorola 68HC11, 1d can perform these global optimizations when you specify the
‘~-relax’ command-line option.

relaring address modes
14 finds all jsr and jmp instructions whose targets are within eight bits, and
turns them into eight-bit program-counter relative bsr and bra instructions,
respectively.

1d also looks at all 16-bit extended addressing modes and transforms them in
a direct addressing mode when the address is in page 0 (between 0 and 0x0ff).

relaxing gce instruction group
When gcc is called with ‘-mrelax’, it can emit group of instructions that the
linker can optimize to use a 68HC11 direct addressing mode. These instructions
consists of bclr or bset instructions.

4.3.2 Trampoline Generation

For 68HC11 and 68HC12, 1d can generate trampoline code to call a far function using a
normal jsr instruction. The linker will also change the relocation to some far function to
use the trampoline address instead of the function address. This is typically the case when
a pointer to a function is taken. The pointer will in fact point to the function trampoline.

4.4 1d and the ARM family

For the ARM, 1d will generate code stubs to allow functions calls between ARM and Thumb
code. These stubs only work with code that has been compiled and assembled with the

Chapter 4: Machine Dependent Features 81

‘-mthumb-interwork’ command line option. If it is necessary to link with old ARM object
files or libraries, which have not been compiled with the -mthumb-interwork option then
the ‘--support-old-code’ command line switch should be given to the linker. This will
make it generate larger stub functions which will work with non-interworking aware ARM
code. Note, however, the linker does not support generating stubs for function calls to
non-interworking aware Thumb code.

The ‘--thumb-entry’ switch is a duplicate of the generic ‘-—entry’ switch, in that it sets
the program’s starting address. But it also sets the bottom bit of the address, so that it
can be branched to using a BX instruction, and the program will start executing in Thumb
mode straight away.

The ‘--use-nul-prefixed-import-tables’ switch is specifying, that the import tables
idatad and idatab have to be generated with a zero elememt prefix for import libraries.
This is the old style to generate import tables. By default this option is turned off.

The ‘--be8’ switch instructs 1d to generate BES8 format executables. This option is only
valid when linking big-endian objects. The resulting image will contain big-endian data and
little-endian code.

The ‘R_ARM_TARGET1’ relocation is typically used for entries in the ‘.init_array’ section.
It is interpreted as either ‘R_ARM_REL32’ or ‘R_ARM_ABS32’, depending on the target. The
‘-—targetl-rel’ and ‘--targetl-abs’ switches override the default.

The ‘--target2=type’ switch overrides the default definition of the ‘R_ARM_TARGET2’ relo-
cation. Valid values for ‘type’, their meanings, and target defaults are as follows:

‘rel’ ‘R_ARM_REL32’ (arm*-*-elf, arm™-*-eabi)
‘abs’ ‘R_ARM_ABS32’ (arm*-*-symbianelf)
‘got-rel’ ‘R_ARM_GOT_PREL’ (arm™-*-linux, arm*-*-*bsd)

The ‘R_ARM_V4BX’ relocation (defined by the ARM AAELF specification) enables objects
compiled for the ARMv4 architecture to be interworking-safe when linked with other objects

compiled for ARMv4t, but also allows pure ARMv4 binaries to be built from the same
ARMv4 objects.

In the latter case, the switch ‘--fix-v4bx’ must be passed to the linker, which causes
v4t BX rM instructions to be rewritten as MOV PC,rM, since v4 processors do not have a BX
instruction.

In the former case, the switch should not be used, and ‘R_ARM_V4BX’ relocations are ignored.

Replace BX rM instructions identified by ‘R_ARM_V4BX’ relocations with a branch to the
following veneer:

TST M, #1

MOVEQ PC, rM

BX Rn
This allows generation of libraries/applications that work on ARMv4 cores and are still
interworking safe. Note that the above veneer clobbers the condition flags, so may cause
incorrect progrm behavior in rare cases.

The ‘--use-blx’ switch enables the linker to use ARM/Thumb BLX instructions (available
on ARMv5t and above) in various situations. Currently it is used to perform calls via the
PLT from Thumb code using BLX rather than using BX and a mode-switching stub before
each PLT entry. This should lead to such calls executing slightly faster.

82 The GNU linker

This option is enabled implicitly for SymbianOS, so there is no need to specify it if you are
using that target.

The ‘--vfpll-denorm-fix’ switch enables a link-time workaround for a bug in certain
VFP11 coprocessor hardware, which sometimes allows instructions with denorm operands
(which must be handled by support code) to have those operands overwritten by subsequent
instructions before the support code can read the intended values.

The bug may be avoided in scalar mode if you allow at least one intervening instruction
between a VFP11 instruction which uses a register and another instruction which writes to
the same register, or at least two intervening instructions if vector mode is in use. The bug
only affects full-compliance floating-point mode: you do not need this workaround if you
are using "runfast" mode. Please contact ARM for further details.

This workaround is enabled for scalar code by default for pre-ARMv7 architectures,
but disabled by default for later architectures. If you know you are not using buggy
VFP11 hardware, you can disable the workaround by specifying the linker option
‘~—vfp-denorm-fix=none’. If you are using VFP vector mode, you should specify
‘-—vfp-denorm-fix=vector’.

If the workaround is enabled, instructions are scanned for potentially-troublesome
sequences, and a veneer is created for each such sequence which may trigger the erratum.
The veneer consists of the first instruction of the sequence and a branch back to the
subsequent instruction. The original instruction is then replaced with a branch to the
veneer. The extra cycles required to call and return from the veneer are sufficient to avoid
the erratum in both the scalar and vector cases.

The ‘--fix-arm1176’” switch enables a link-time workaround for an erratum in certain
ARMI1176 processors. The workaround is enabled by default if you are targetting ARM
v6 (excluding ARM v6T2) or earlier. It can be disabled unconditionally by specifying
‘~-no-fix-arm1176’.

Further information is available in the “ARMI1176JZ-S and ARMI1176JZF-S
Programmer Advice Notice” available on the ARM documentaion website at:
http://infocenter.arm.com/.

The ‘--no-enum-size-warning’ switch prevents the linker from warning when linking ob-
ject files that specify incompatible EABI enumeration size attributes. For example, with
this switch enabled, linking of an object file using 32-bit enumeration values with another
using enumeration values fitted into the smallest possible space will not be diagnosed.

The ‘--no-wchar-size-warning’ switch prevents the linker from warning when linking
object files that specify incompatible EABI wchar_t size attributes. For example, with this
switch enabled, linking of an object file using 32-bit wchar_t values with another using
16-bit wchar_t values will not be diagnosed.

The ‘--pic-veneer’ switch makes the linker use PIC sequences for ARM/Thumb inter-
working veneers, even if the rest of the binary is not PIC. This avoids problems on uClinux
targets where ‘-—emit-relocs’ is used to generate relocatable binaries.

The linker will automatically generate and insert small sequences of code into a linked ARM
ELF executable whenever an attempt is made to perform a function call to a symbol that is
too far away. The placement of these sequences of instructions - called stubs - is controlled
by the command line option ‘--stub-group-size=N’. The placement is important because
a poor choice can create a need for duplicate stubs, increasing the code sizw. The linker

Chapter 4: Machine Dependent Features 83

will try to group stubs together in order to reduce interruptions to the flow of code, but it
needs guidance as to how big these groups should be and where they should be placed.

4)

The value of ‘N’, the parameter to the ‘--stub-group-size=’ option controls where the
stub groups are placed. If it is negative then all stubs are placed after the first branch that
needs them. If it is positive then the stubs can be placed either before or after the branches
that need them. If the value of ‘N’ is 1 (either +1 or -1) then the linker will choose exactly
where to place groups of stubs, using its built in heuristics. A value of ‘N’ greater than 1
(or smaller than -1) tells the linker that a single group of stubs can service at most ‘N’ bytes
from the input sections.

The default, if ‘--stub-group-size="is not specified, is ‘N = +1’.

Farcalls stubs insertion is fully supported for the ARM-EABI target only, because it relies
on object files properties not present otherwise.

The ‘--fix-cortex-a8’ switch enables a link-time workaround for an erratum in certain
Cortex-A8 processors. The workaround is enabled by default if you are targeting the ARM
v7-A architecture profile. It can be enabled otherwise by specifying ‘--fix-cortex-a8’, or
disabled unconditionally by specifying ‘--no-fix-cortex-a8’.

The erratum only affects Thumb-2 code. Please contact ARM for further details.

4.5 1d and HPPA 32-bit ELF Support

When generating a shared library, 1d will by default generate import stubs suitable for use
with a single sub-space application. The ‘~-multi-subspace’ switch causes 1d to generate
export stubs, and different (larger) import stubs suitable for use with multiple sub-spaces.

Long branch stubs and import/export stubs are placed by 1d in stub sections located
between groups of input sections. ‘--stub-group-size’ specifies the maximum size of a
group of input sections handled by one stub section. Since branch offsets are signed, a stub
section may serve two groups of input sections, one group before the stub section, and one
group after it. However, when using conditional branches that require stubs, it may be
better (for branch prediction) that stub sections only serve one group of input sections. A
negative value for ‘N’ chooses this scheme, ensuring that branches to stubs always use a
negative offset. Two special values of ‘N’ are recognized, ‘1’ and ‘-=1’. These both instruct
1d to automatically size input section groups for the branch types detected, with the same
behaviour regarding stub placement as other positive or negative values of ‘N’ respectively.

Note that ‘--stub-group-size’ does not split input sections. A single input section larger
than the group size specified will of course create a larger group (of one section). If input
sections are too large, it may not be possible for a branch to reach its stub.

4.6 1d and the Motorola 68K family

The ‘--got=type’ option lets you choose the GOT generation scheme. The choices are
‘single’, ‘negative’, ‘multigot’ and ‘target’. When ‘target’ is selected the linker chooses
the default GOT generation scheme for the current target. ‘single’ tells the linker to
generate a single GOT with entries only at non-negative offsets. ‘negative’ instructs the
linker to generate a single GOT with entries at both negative and positive offsets. Not all
environments support such GOTs. ‘multigot’ allows the linker to generate several GOTs
in the output file. All GOT references from a single input object file access the same

84 The GNU linker

GOT, but references from different input object files might access different GOTs. Not all
environments support such GOTs.

4.7 1d and the MIPS family

The ‘--insn32’ and ‘--no-insn32’ options control the choice of microMIPS instructions
used in code generated by the linker, such as that in the PLT or lazy binding stubs, or in
relaxation. If ‘--insn32’ is used, then the linker only uses 32-bit instruction encodings. By
default or if ‘~-no-insn32’ is used, all instruction encodings are used, including 16-bit ones
where possible.

4.8 1d and MMIX

For MMIX, there is a choice of generating ELF object files or mmo object files when linking.
The simulator mmix understands the mmo format. The binutils objcopy utility can translate
between the two formats.

There is one special section, the ‘.MMIX.reg_contents’ section. Contents in this sec-
tion is assumed to correspond to that of global registers, and symbols referring to it are
translated to special symbols, equal to registers. In a final link, the start address of the
‘.MMIX.reg_contents’ section corresponds to the first allocated global register multiplied
by 8. Register $255 is not included in this section; it is always set to the program entry,
which is at the symbol Main for mmo files.

Global symbols with the prefix __.MMIX.start., for example __.MMIX.start..text and
__.MMIX.start..data are special. The default linker script uses these to set the default
start address of a section.

Initial and trailing multiples of zero-valued 32-bit words in a section, are left out from an
mmo file.

4.9 1d and MSP430

For the MSP430 it is possible to select the MPU architecture. The flag ‘-m [mpu type]’ will
select an appropriate linker script for selected MPU type. (To get a list of known MPUs
just pass ‘-m help’ option to the linker).

The linker will recognize some extra sections which are MSP430 specific:

¢.vectors’
Defines a portion of ROM where interrupt vectors located.

¢ .bootloader’
Defines the bootloader portion of the ROM (if applicable). Any code in this
section will be uploaded to the MPU.

¢ .infomem’
Defines an information memory section (if applicable). Any code in this section
will be uploaded to the MPU.

¢.infomemnobits’
This is the same as the ‘. infomem’ section except that any code in this section
will not be uploaded to the MPU.

Chapter 4: Machine Dependent Features 85

‘.noinit’
Denotes a portion of RAM located above ‘.bss’ section.

The last two sections are used by gcc.

4.10 1d and PowerPC 32-bit ELF Support

Branches on PowerPC processors are limited to a signed 26-bit displacement, which may
result in 1d giving ‘relocation truncated to fit’ errors with very large programs.
‘-—relax’ enables the generation of trampolines that can access the entire 32-bit address
space. These trampolines are inserted at section boundaries, so may not themselves be
reachable if an input section exceeds 33M in size. You may combine ‘-r’ and ‘--relax’
to add trampolines in a partial link. In that case both branches to undefined symbols
and inter-section branches are also considered potentially out of range, and trampolines
inserted.

‘--bss-plt’

Current PowerPC GCC accepts a ‘-msecure-plt’ option that generates code
capable of using a newer PLT and GOT layout that has the security advantage
of no executable section ever needing to be writable and no writable section
ever being executable. PowerPC 1d will generate this layout, including stubs
to access the PLT, if all input files (including startup and static libraries) were
compiled with ‘-msecure-plt’. ‘--bss-plt’ forces the old BSS PLT (and GOT
layout) which can give slightly better performance.

‘-—secure-plt’
1d will use the new PLT and GOT layout if it is linking new ‘~fpic’ or ‘-fPIC’
code, but does not do so automatically when linking non-PIC code. This option
requests the new PLT and GOT layout. A warning will be given if some object
file requires the old style BSS PLT.

‘--sdata-got’

The new secure PLT and GOT are placed differently relative to other sections
compared to older BSS PLT and GOT placement. The location of .plt must
change because the new secure PLT is an initialized section while the old PLT
is uninitialized. The reason for the .got change is more subtle: The new
placement allows .got to be read-only in applications linked with ‘-z relro -z
now’. However, this placement means that .sdata cannot always be used in
shared libraries, because the PowerPC ABI accesses .sdata in shared libraries
from the GOT pointer. ‘--sdata-got’ forces the old GOT placement. PowerPC
GCC doesn’t use .sdata in shared libraries, so this option is really only useful
for other compilers that may do so.

‘-—emit-stub-syms’
This option causes 1d to label linker stubs with a local symbol that encodes the
stub type and destination.

‘-—no-tls-optimize’
PowerPC 1d normally performs some optimization of code sequences used to
access Thread-Local Storage. Use this option to disable the optimization.

86 The GNU linker

4.11 1d and PowerPC64 64-bit ELF Support

‘-—stub-group-size’

Long branch stubs, PLT call stubs and TOC adjusting stubs are placed by 1d in
stub sections located between groups of input sections. ‘--stub-group-size’
specifies the maximum size of a group of input sections handled by one stub
section. Since branch offsets are signed, a stub section may serve two groups
of input sections, one group before the stub section, and one group after it.
However, when using conditional branches that require stubs, it may be better
(for branch prediction) that stub sections only serve one group of input sections.
A negative value for ‘N’ chooses this scheme, ensuring that branches to stubs
always use a negative offset. Two special values of ‘N’ are recognized, ‘1’ and
‘~1’. These both instruct 1d to automatically size input section groups for the
branch types detected, with the same behaviour regarding stub placement as
other positive or negative values of ‘N’ respectively.

Note that ‘~-stub-group-size’ does not split input sections. A single input
section larger than the group size specified will of course create a larger group
(of one section). If input sections are too large, it may not be possible for a
branch to reach its stub.

‘—-—emit-stub-syms’
This option causes 1d to label linker stubs with a local symbol that encodes the
stub type and destination.

‘-—dotsyms, -—no-dotsyms’

These two options control how 1d interprets version patterns in a version script.
Older PowerPC64 compilers emitted both a function descriptor symbol with the
same name as the function, and a code entry symbol with the name prefixed
by a dot (‘.”). To properly version a function ‘foo’, the version script thus
needs to control both ‘foo’ and ‘.foo’. The option ‘--dotsyms’, on by default,
automatically adds the required dot-prefixed patterns. Use ‘--no-dotsyms’ to
disable this feature.

‘~-no-tls-optimize’
PowerPC64 14 normally performs some optimization of code sequences used to
access Thread-Local Storage. Use this option to disable the optimization.

‘-—no-opd-optimize’
PowerPC64 1d normally removes .opd section entries corresponding to deleted
link-once functions, or functions removed by the action of ‘--gc-sections’ or
linker script /DISCARD/. Use this option to disable .opd optimization.

‘-—non-overlapping-opd’
Some PowerPC64 compilers have an option to generate compressed . opd entries
spaced 16 bytes apart, overlapping the third word, the static chain pointer
(unused in C) with the first word of the next entry. This option expands such
entries to the full 24 bytes.

‘-—no-toc-optimize’
PowerPC64 1d normally removes unused .toc section entries. Such entries are
detected by examining relocations that reference the TOC in code sections. A

Chapter 4: Machine Dependent Features 87

reloc in a deleted code section marks a TOC word as unneeded, while a reloc in
a kept code section marks a TOC word as needed. Since the TOC may reference
itself, TOC relocs are also examined. TOC words marked as both needed and
unneeded will of course be kept. TOC words without any referencing reloc are
assumed to be part of a multi-word entry, and are kept or discarded as per
the nearest marked preceding word. This works reliably for compiler generated
code, but may be incorrect if assembly code is used to insert TOC entries. Use
this option to disable the optimization.

‘——no-multi-toc’

By default, PowerPC64 GCC generates code for a TOC model where TOC
entries are accessed with a 16-bit offset from r2. This limits the total TOC
size to 64K. PowerPC64 1d extends this limit by grouping code sections such
that each group uses less than 64K for its TOC entries, then inserts r2 adjusting
stubs between inter-group calls. 1d does not split apart input sections, so cannot
help if a single input file has a .toc section that exceeds 64K, most likely from
linking multiple files with 1d -r. Use this option to turn off this feature.

4.12 1d and SPU ELF Support

‘--plugin’

This option marks an executable as a PIC plugin module.

‘--no-overlays’

Normally, 1d recognizes calls to functions within overlay regions, and redirects
such calls to an overlay manager via a stub. 1d also provides a built-in overlay
manager. This option turns off all this special overlay handling.

‘-—emit-stub-syms’

This option causes 1d to label overlay stubs with a local symbol that encodes
the stub type and destination.

‘-—extra-overlay-stubs’

This option causes 1d to add overlay call stubs on all function calls out of
overlay regions. Normally stubs are not added on calls to non-overlay regions.

‘——local-store=lo:hi’

1d usually checks that a final executable for SPU fits in the address range 0 to
256k. This option may be used to change the range. Disable the check entirely
with ‘--local-store=0:0".

‘--stack-analysis’

SPU local store space is limited. Over-allocation of stack space unnecessarily
limits space available for code and data, while under-allocation results in run-
time failures. If given this option, 1d will provide an estimate of maximum
stack usage. 1d does this by examining symbols in code sections to determine
the extents of functions, and looking at function prologues for stack adjust-
ing instructions. A call-graph is created by looking for relocations on branch
instructions. The graph is then searched for the maximum stack usage path.
Note that this analysis does not find calls made via function pointers, and does

88

The GNU linker

not handle recursion and other cycles in the call graph. Stack usage may be
under-estimated if your code makes such calls. Also, stack usage for dynamic
allocation, e.g. alloca, will not be detected. If a link map is requested, detailed
information about each function’s stack usage and calls will be given.

‘-—emit-stack-syms’

This option, if given along with ‘~-stack-analysis’ will result in 1d emit-
ting stack sizing symbols for each function. These take the form __stack_
<function_name> for global functions, and __stack_<number>_<function_
name> for static functions. <number> is the section id in hex. The value of
such symbols is the stack requirement for the corresponding function. The
symbol size will be zero, type STT_NOTYPE, binding STB_LOCAL, and section
SHN_ABS.

4.13 1d’s Support for Various TI COFF Versions

The ‘--format’ switch allows selection of one of the various TI COFF versions. The latest
of this writing is 2; versions 0 and 1 are also supported. The TI COFF versions also vary
in header byte-order format; 1d will read any version or byte order, but the output header
format depends on the default specified by the specific target.

4.14 1d and WIN32 (cygwin/mingw)

This section describes some of the win32 specific 1d issues. See Section 2.1 [Command Line
Options|, page 3 for detailed description of the command line options mentioned here.

import libraries

The standard Windows linker creates and uses so-called import libraries, which
contains information for linking to dll’s. They are regular static archives and
are handled as any other static archive. The cygwin and mingw ports of 1d have
specific support for creating such libraries provided with the ‘--out-implib’
command line option.

exporting DLL symbols

The cygwin/mingw 1d has several ways to export symbols for dll’s.

using auto-export functionality
By default 1d exports symbols with the auto-export functionality,
which is controlled by the following command line options:

e —export-all-symbols [This is the default]

e —exclude-symbols

e —exclude-libs

e —exclude-modules-for-implib

e —version-script
When auto-export is in operation, 1d will export all the non-local
(global and common) symbols it finds in a DLL, with the excep-

tion of a few symbols known to belong to the system’s runtime
and libraries. As it will often not be desirable to export all of a

Chapter 4: Machine Dependent Features 89

DLL’s symbols, which may include private functions that are not
part of any public interface, the command-line options listed above
may be used to filter symbols out from the list for exporting. The
‘-—output-def’ option can be used in order to see the final list of
exported symbols with all exclusions taken into effect.

If ‘-—export-all-symbols’ is not given explicitly on the command
line, then the default auto-export behavior will be disabled if either
of the following are true:

e A DEF file is used.

e Any symbol in any object file was marked with the
__declspec(dllexport) attribute.

using a DEF file
Another way of exporting symbols is using a DEF file. A DEF file is
an ASCII file containing definitions of symbols which should be ex-
ported when a dll is created. Usually it is named ‘<d11 name>.def’
and is added as any other object file to the linker’s command line.
The file’s name must end in ‘.def’ or ‘.DEF’.

gcc —o <output> <objectfiles> <dll name>.def

Using a DEF file turns off the normal auto-export behavior, unless
the ‘—-export-all-symbols’ option is also used.

Here is an example of a DEF file for a shared library called
‘xyz.d1l”:
LIBRARY "xyz.dll" BASE=0x20000000

EXPORTS

foo

bar

_bar = bar

another_foo = abc.dll.afoo
varl DATA

doo = foo == foo02

eoo DATA == varl

This example defines a DLL with a non-default base address and
seven symbols in the export table. The third exported symbol _
bar is an alias for the second. The fourth symbol, another_foo is
resolved by "forwarding" to another module and treating it as an
alias for afoo exported from the DLL ‘abc.d11’. The final symbol
varl is declared to be a data object. The ‘doo’ symbol in export
library is an alias of ‘foo’, which gets the string name in export
table ‘fo02’. The ‘eoo’ symbol is an data export symbol, which
gets in export table the name ‘var1’.

The optional LIBRARY <name> command indicates the internal
name of the output DLL. If ‘<name>’ does not include a suffix, the
default library suffix, ‘.DLL’ is appended.

The GNU linker

When the .DEF file is used to build an application, rather than
a library, the NAME <name> command should be used instead of
LIBRARY. If ‘<name>’ does not include a suffix, the default exe-
cutable suffix, ‘.EXE’ is appended.

With either LIBRARY <name> or NAME <name> the optional specifi-
cation BASE = <number> may be used to specify a non-default base
address for the image.

If neither LIBRARY <name> nor NAME <name> is specified, or they
specify an empty string, the internal name is the same as the file-
name specified on the command line.

The complete specification of an export symbol is:

EXPORTS
(¢ (<namel> [= <name2>])
| (<namel> = <module-name> . <external-name>))
[@ <integer>] [NONAME] [DATA] [CONSTANT] [PRIVATE] [== <name3>

Declares ‘<name1>’ as an exported symbol from the DLL, or de-
clares ‘<namel>’ as an exported alias for ‘<name2>’; or declares
‘<namel1>’ as a "forward" alias for the symbol ‘<external-name>’
in the DLL ‘<module-name>’. Optionally, the symbol may be ex-
ported by the specified ordinal ‘<integer>’ alias. The optional
‘<name3>’ is the to be used string in import/export table for the
symbol.

The optional keywords that follow the declaration indicate:

NONAME: Do not put the symbol name in the DLL’s export table. It
will still be exported by its ordinal alias (either the value specified
by the .def specification or, otherwise, the value assigned by the
linker). The symbol name, however, does remain visible in the
import library (if any), unless PRIVATE is also specified.

DATA: The symbol is a variable or object, rather than a function.
The import lib will export only an indirect reference to foo as the
symbol _imp__foo (ie, foo must be resolved as *_imp__foo0).

CONSTANT: Like DATA, but put the undecorated foo as well as _imp_
_foo into the import library. Both refer to the read-only import
address table’s pointer to the variable, not to the variable itself.
This can be dangerous. If the user code fails to add the d1limport
attribute and also fails to explicitly add the extra indirection that
the use of the attribute enforces, the application will behave unex-
pectedly.

PRIVATE: Put the symbol in the DLL’s export table, but do
not put it into the static import library used to resolve imports
at link time. The symbol can still be imported using the
LoadLibrary/GetProcAddress API at runtime or by by using
the GNU Id extension of linking directly to the DLL without an
import library.

Chapter 4: Machine Dependent Features 91

See 1d/deffilep.y in the binutils sources for the full specification of
other DEF file statements

While linking a shared dll, 14 is able to create a DEF file with the
‘~—output-def <file>’ command line option.

Using decorations
Another way of marking symbols for export is to modify the source
code itself, so that when building the DLL each symbol to be ex-
ported is declared as:

__declspec(dllexport) int a_variable
__declspec(dllexport) void a_function(int with_args)

All such symbols will be exported from the DLL. If, however, any
of the object files in the DLL contain symbols decorated in this
way, then the normal auto-export behavior is disabled, unless the
‘-—export-all-symbols’ option is also used.

Note that object files that wish to access these symbols must not
decorate them with dllexport. Instead, they should use dllimport,
instead:

__declspec(dllimport) int a_variable
__declspec(dllimport) void a_function(int with_args)

This complicates the structure of library header files, because
when included by the library itself the header must declare
the variables and functions as dllexport, but when included by
client code the header must declare them as dllimport. There
are a number of idioms that are typically used to do this; often
client code can omit the __declspec() declaration completely. See
‘-—enable-auto-import’ and ‘automatic data imports’ for more
information.

automatic data imports

The standard Windows dll format supports data imports from dlls only by
adding special decorations (dllimport/dllexport), which let the compiler pro-
duce specific assembler instructions to deal with this issue. This increases the
effort necessary to port existing Un*x code to these platforms, especially for
large c++ libraries and applications. The auto-import feature, which was ini-
tially provided by Paul Sokolovsky, allows one to omit the decorations to achieve
a behavior that conforms to that on POSIX/Un*x platforms. This feature is
enabled with the ‘--enable-auto-import’ command-line option, although it
is enabled by default on cygwin/mingw. The ‘--enable-auto-import’ option
itself now serves mainly to suppress any warnings that are ordinarily emitted
when linked objects trigger the feature’s use.

auto-import of variables does not always work flawlessly without additional
assistance. Sometimes, you will see this message

"variable '<var>’ can’t be auto-imported. Please read the documentation for
ld’s -—enable-auto-import for details."

92

The GNU linker

The ‘--enable-auto-import’ documentation explains why this error occurs,
and several methods that can be used to overcome this difficulty. One of these
methods is the runtime pseudo-relocs feature, described below.

For complex variables imported from DLLs (such as structs or classes), ob-
ject files typically contain a base address for the variable and an offset (ad-
dend) within the variable—to specify a particular field or public member, for
instance. Unfortunately, the runtime loader used in win32 environments is in-
capable of fixing these references at runtime without the additional information
supplied by dllimport/dllexport decorations. The standard auto-import feature
described above is unable to resolve these references.

The ‘--enable-runtime-pseudo-relocs’ switch allows these references to be
resolved without error, while leaving the task of adjusting the references them-
selves (with their non-zero addends) to specialized code provided by the run-
time environment. Recent versions of the cygwin and mingw environments and
compilers provide this runtime support; older versions do not. However, the
support is only necessary on the developer’s platform; the compiled result will
run without error on an older system.

‘-—enable-runtime-pseudo-relocs’ is not the default; it must be explicitly
enabled as needed.

direct linking to a dll

The cygwin/mingw ports of 1d support the direct linking, including data sym-
bols, to a dll without the usage of any import libraries. This is much faster
and uses much less memory than does the traditional import library method,
especially when linking large libraries or applications. When 1d creates an im-
port lib, each function or variable exported from the dll is stored in its own bfd,
even though a single bfd could contain many exports. The overhead involved
in storing, loading, and processing so many bfd’s is quite large, and explains
the tremendous time, memory, and storage needed to link against particularly
large or complex libraries when using import libs.

Linking directly to a dll uses no extra command-line switches other than ‘-L’
and ‘-1’, because 1d already searches for a number of names to match each
library. All that is needed from the developer’s perspective is an understanding
of this search, in order to force ld to select the dll instead of an import library.

For instance, when 1d is called with the argument ‘-1xxx’ it will attempt to
find, in the first directory of its search path,

libxxx.dll.a
xxx.dll.a
libxxx.a
xxx.1lib
cygxxx.dll (%)
libxxx.dll
xxx.dll

before moving on to the next directory in the search path.

(*) Actually, this is not ‘cygxxx.d1l’ but in fact is ‘<prefix>xxx.d1ll’, where
‘<prefix>’ is set by the 1d option ‘--dll-search-prefix=<prefix>’. In the

Chapter 4: Machine Dependent Features 93

case of cygwin, the standard gcc spec file includes ‘--d11-search-prefix=cyg’,
so in effect we actually search for ‘cygxxx.d1l’.

Other win32-based unix environments, such as mingw or pw32, may use other
‘<prefix>’es, although at present only cygwin makes use of this feature. It
was originally intended to help avoid name conflicts among dll’s built for the
various win32/un*x environments, so that (for example) two versions of a zlib
dll could coexist on the same machine.

The generic cygwin/mingw path layout uses a ‘bin’ directory for applications
and dll’s and a ‘1ib’ directory for the import libraries (using cygwin nomencla-

ture):
bin/
cygxxx.dll
1lib/
libxxx.dll.a (in case of dll’s)
libxxx.a (in case of static archive)

Linking directly to a dll without using the import library can be done two ways:
1. Use the dll directly by adding the ‘bin’ path to the link line
gcc -Wl,-verbose -o a.exe -L../bin/ -lxxx

However, as the dllI’s often have version numbers appended to their names
(‘cygncurses-5.d11’) this will often fail, unless one specifies ‘-L../bin
-lncurses-5’ to include the version. Import libs are generally not versioned,
and do not have this difficulty.

2. Create a symbolic link from the dll to a file in the ‘1ib’ directory according
to the above mentioned search pattern. This should be used to avoid unwanted
changes in the tools needed for making the app/dll.

1n -s bin/cygxxx.dll 1ib/[cygllib|]lxxx.d11[.al
Then you can link without any make environment changes.
gcc -Wl,-verbose -o a.exe -L../lib/ -lxxx
This technique also avoids the version number problems, because the following
is perfectly legal
bin/
cygxxx-5.d11
lib/
libxxx.dll.a -> ../bin/cygxxx-5.d1l
Linking directly to a dll without wusing an import lib will work

even when auto-import features are exercised, and even when
‘-—enable-runtime-pseudo-relocs’ is used.

Given the improvements in speed and memory usage, one might justifiably
wonder why import libraries are used at all. There are three reasons:

1. Until recently, the link-directly-to-dll functionality did not work with auto-
imported data.

2. Sometimes it is necessary to include pure static objects within the import
library (which otherwise contains only bfd’s for indirection symbols that point

94

The GNU linker

to the exports of a dll). Again, the import lib for the cygwin kernel makes use
of this ability, and it is not possible to do this without an import lib.

3. Symbol aliases can only be resolved using an import lib. This is critical
when linking against OS-supplied dIl’s (eg, the win32 API) in which symbols
are usually exported as undecorated aliases of their stdcall-decorated assembly
names.

So, import libs are not going away. But the ability to replace true import libs
with a simple symbolic link to (or a copy of) a dll, in many cases, is a useful
addition to the suite of tools binutils makes available to the win32 developer.
Given the massive improvements in memory requirements during linking, stor-
age requirements, and linking speed, we expect that many developers will soon
begin to use this feature whenever possible.

symbol aliasing

adding additional names
Sometimes, it is useful to export symbols with additional names. A
symbol ‘foo’ will be exported as ‘foo’, but it can also be exported
as ‘_foo’ by using special directives in the DEF file when creating
the dll. This will affect also the optional created import library.
Consider the following DEF file:

LIBRARY "xyz.dll" BASE=0x61000000

EXPORTS
foo
_foo = foo

The line ‘_foo = foo’ maps the symbol ‘foo’ to ‘_foo’.

Another method for creating a symbol alias is to create it in the
source code using the "weak" attribute:

void foo () { /* Do something. */; }
void _foo () attribute ((weak, alias ("foo")));

See the gcec manual for more information about attributes and weak
symbols.

renaming symbols
Sometimes it is useful to rename exports. For instance, the cygwin
kernel does this regularly. A symbol ‘_foo’ can be exported as ‘foo’
but not as ‘_foo’ by using special directives in the DEF file. (This
will also affect the import library, if it is created). In the following
example:

LIBRARY "xyz.dll" BASE=0x61000000

EXPORTS
_foo = foo

The line ‘_foo = foo’ maps the exported symbol ‘foo’ to ‘_foo’.

Note: using a DEF file disables the default auto-export behavior, unless the
‘-—export-all-symbols’ command line option is used. If, however, you are

Chapter 4: Machine Dependent Features 95

trying to rename symbols, then you should list all desired exports in the DEF
file, including the symbols that are not being renamed, and do not use the
‘-—export-all-symbols’ option. If you list only the renamed symbols in the
DEF file, and use ‘--export-all-symbols’ to handle the other symbols, then
the both the new names and the original names for the renamed symbols will
be exported. In effect, you’d be aliasing those symbols, not renaming them,
which is probably not what you wanted.

weak externals
The Windows object format, PE, specifies a form of weak symbols called weak
externals. When a weak symbol is linked and the symbol is not defined, the
weak symbol becomes an alias for some other symbol. There are three variants
of weak externals:

e Definition is searched for in objects and libraries, historically called lazy
externals.

e Definition is searched for only in other objects, not in libraries. This form
is not presently implemented.

e No search; the symbol is an alias. This form is not presently implemented.

As a GNU extension, weak symbols that do not specify an alternate symbol are
supported. If the symbol is undefined when linking, the symbol uses a default
value.

aligned common symbols

As a GNU extension to the PE file format, it is possible to specify the desired
alignment for a common symbol. This information is conveyed from the assem-
bler or compiler to the linker by means of GNU-specific commands carried in
the object file’s ‘.drectve’ section, which are recognized by 1d and respected
when laying out the common symbols. Native tools will be able to process ob-
ject files employing this GNU extension, but will fail to respect the alignment
instructions, and may issue noisy warnings about unknown linker directives.

4.15 1d and Xtensa Processors

The default 1d behavior for Xtensa processors is to interpret SECTIONS commands so that
lists of explicitly named sections in a specification with a wildcard file will be interleaved
when necessary to keep literal pools within the range of PC-relative load offsets. For
example, with the command:

SECTIONS
{
.text @ {
*(.literal .text)
}
}
1d may interleave some of the .literal and .text sections from different object files
to ensure that the literal pools are within the range of PC-relative load offsets. A valid
interleaving might place the .1literal sections from an initial group of files followed by the
.text sections of that group of files. Then, the .1iteral sections from the rest of the files
and the .text sections from the rest of the files would follow.

96 The GNU linker

Relaxation is enabled by default for the Xtensa version of 1d and provides two impor-
tant link-time optimizations. The first optimization is to combine identical literal values
to reduce code size. A redundant literal will be removed and all the L32R instructions
that use it will be changed to reference an identical literal, as long as the location of the
replacement literal is within the offset range of all the L32R instructions. The second opti-
mization is to remove unnecessary overhead from assembler-generated “longcall” sequences
of L32R/CALLXn when the target functions are within range of direct CALLn instructions.

For each of these cases where an indirect call sequence can be optimized to a direct call,
the linker will change the CALLXn instruction to a CALLn instruction, remove the L32R
instruction, and remove the literal referenced by the L32R instruction if it is not used for
anything else. Removing the L32R instruction always reduces code size but can potentially
hurt performance by changing the alignment of subsequent branch targets. By default, the
linker will always preserve alignments, either by switching some instructions between 24-bit
encodings and the equivalent density instructions or by inserting a no-op in place of the
L32R instruction that was removed. If code size is more important than performance, the
‘-—size-opt’ option can be used to prevent the linker from widening density instructions
or inserting no-ops, except in a few cases where no-ops are required for correctness.

The following Xtensa-specific command-line options can be used to control the linker:

‘-—size-opt’
When optimizing indirect calls to direct calls, optimize for code size more than
performance. With this option, the linker will not insert no-ops or widen density
instructions to preserve branch target alignment. There may still be some cases
where no-ops are required to preserve the correctness of the code.

Chapter 5: BFD 97

5 BFD

The linker accesses object and archive files using the BEFD libraries. These libraries allow
the linker to use the same routines to operate on object files whatever the object file format.
A different object file format can be supported simply by creating a new BFD back end and
adding it to the library. To conserve runtime memory, however, the linker and associated
tools are usually configured to support only a subset of the object file formats available.
You can use objdump -i (see Section “objdump” in The GNU Binary Utilities) to list all
the formats available for your configuration.

As with most implementations, BFD is a compromise between several conflicting require-
ments. The major factor influencing BFD design was efficiency: any time used converting
between formats is time which would not have been spent had BFD not been involved. This
is partly offset by abstraction payback; since BFD simplifies applications and back ends,
more time and care may be spent optimizing algorithms for a greater speed.

One minor artifact of the BFD solution which you should bear in mind is the potential for
information loss. There are two places where useful information can be lost using the BFD
mechanism: during conversion and during output. See Section 5.1.1 [BFD information loss],
page 97.

5.1 How It Works: An Outline of BFD

When an object file is opened, BFD subroutines automatically determine the format of the
input object file. They then build a descriptor in memory with pointers to routines that
will be used to access elements of the object file’s data structures.

As different information from the object files is required, BFD reads from different sections
of the file and processes them. For example, a very common operation for the linker is
processing symbol tables. Each BFD back end provides a routine for converting between
the object file’s representation of symbols and an internal canonical format. When the
linker asks for the symbol table of an object file, it calls through a memory pointer to the
routine from the relevant BFD back end which reads and converts the table into a canonical
form. The linker then operates upon the canonical form. When the link is finished and the
linker writes the output file’s symbol table, another BED back end routine is called to take
the newly created symbol table and convert it into the chosen output format.

5.1.1 Information Loss

Information can be lost during output. The output formats supported by BFD do not
provide identical facilities, and information which can be described in one form has nowhere
to go in another format. One example of this is alignment information in b.out. There is
nowhere in an a.out format file to store alignment information on the contained data, so
when a file is linked from b.out and an a.out image is produced, alignment information
will not propagate to the output file. (The linker will still use the alignment information
internally, so the link is performed correctly).

Another example is COFF section names. COFF files may contain an unlimited number of
sections, each one with a textual section name. If the target of the link is a format which
does not have many sections (e.g., a.out) or has sections without names (e.g., the Oasys
format), the link cannot be done simply. You can circumvent this problem by describing
the desired input-to-output section mapping with the linker command language.

98 The GNU linker

Information can be lost during canonicalization. The BFD internal canonical form of the
external formats is not exhaustive; there are structures in input formats for which there is
no direct representation internally. This means that the BFD back ends cannot maintain
all possible data richness through the transformation between external to internal and back
to external formats.

This limitation is only a problem when an application reads one format and writes another.
Each BFD back end is responsible for maintaining as much data as possible, and the internal
BFD canonical form has structures which are opaque to the BFD core, and exported only
to the back ends. When a file is read in one format, the canonical form is generated for
BED and the application. At the same time, the back end saves away any information
which may otherwise be lost. If the data is then written back in the same format, the back
end routine will be able to use the canonical form provided by the BFD core as well as the
information it prepared earlier. Since there is a great deal of commonality between back
ends, there is no information lost when linking or copying big endian COFF to little endian
COFF, or a.out to b.out. When a mixture of formats is linked, the information is only
lost from the files whose format differs from the destination.

5.1.2 The BFD canonical object-file format

The greatest potential for loss of information occurs when there is the least overlap between
the information provided by the source format, that stored by the canonical format, and
that needed by the destination format. A brief description of the canonical form may help
you understand which kinds of data you can count on preserving across conversions.

files Information stored on a per-file basis includes target machine architecture, par-
ticular implementation format type, a demand pageable bit, and a write pro-
tected bit. Information like Unix magic numbers is not stored here—only the
magic numbers’ meaning, so a ZMAGIC file would have both the demand page-
able bit and the write protected text bit set. The byte order of the target is
stored on a per-file basis, so that big- and little-endian object files may be used
with one another.

sections Each section in the input file contains the name of the section, the section’s
original address in the object file, size and alignment information, various flags,
and pointers into other BFD data structures.

symbols Each symbol contains a pointer to the information for the object file which
originally defined it, its name, its value, and various flag bits. When a BFD
back end reads in a symbol table, it relocates all symbols to make them relative
to the base of the section where they were defined. Doing this ensures that
each symbol points to its containing section. Each symbol also has a varying
amount of hidden private data for the BFD back end. Since the symbol points
to the original file, the private data format for that symbol is accessible. 1d can
operate on a collection of symbols of wildly different formats without problems.

Normal global and simple local symbols are maintained on output, so an output
file (no matter its format) will retain symbols pointing to functions and to
global, static, and common variables. Some symbol information is not worth
retaining; in a.out, type information is stored in the symbol table as long

Chapter 5: BFD 99

symbol names. This information would be useless to most COFF debuggers;
the linker has command line switches to allow users to throw it away.

There is one word of type information within the symbol, so if the format
supports symbol type information within symbols (for example, COFF, IEEE,
Oasys) and the type is simple enough to fit within one word (nearly everything
but aggregates), the information will be preserved.

relocation level

Each canonical BFD relocation record contains a pointer to the symbol to re-
locate to, the offset of the data to relocate, the section the data is in, and
a pointer to a relocation type descriptor. Relocation is performed by passing
messages through the relocation type descriptor and the symbol pointer. There-
fore, relocations can be performed on output data using a relocation method
that is only available in one of the input formats. For instance, Oasys provides
a byte relocation format. A relocation record requesting this relocation type
would point indirectly to a routine to perform this, so the relocation may be
performed on a byte being written to a 68k COFF file, even though 68k COFF
has no such relocation type.

line numbers

Object formats can contain, for debugging purposes, some form of mapping
between symbols, source line numbers, and addresses in the output file. These
addresses have to be relocated along with the symbol information. Each symbol
with an associated list of line number records points to the first record of the list.
The head of a line number list consists of a pointer to the symbol, which allows
finding out the address of the function whose line number is being described.
The rest of the list is made up of pairs: offsets into the section and line numbers.
Any format which can simply derive this information can pass it successfully
between formats (COFF, IEEE and Oasys).

Chapter 6: Reporting Bugs 101

6 Reporting Bugs

Your bug reports play an essential role in making 14 reliable.

Reporting a bug may help you by bringing a solution to your problem, or it may not. But
in any case the principal function of a bug report is to help the entire community by making
the next version of 1d work better. Bug reports are your contribution to the maintenance
of 1d.

In order for a bug report to serve its purpose, you must include the information that enables
us to fix the bug.

6.1 Have You Found a Bug?

If you are not sure whether you have found a bug, here are some guidelines:

e If the linker gets a fatal signal, for any input whatever, that is a 1d bug. Reliable
linkers never crash.

e If 1d produces an error message for valid input, that is a bug.

e If 1d does not produce an error message for invalid input, that may be a bug. In the
general case, the linker can not verify that object files are correct.

e If you are an experienced user of linkers, your suggestions for improvement of 1d are
welcome in any case.

6.2 How to Report Bugs

A number of companies and individuals offer support for GNU products. If you obtained 1d
from a support organization, we recommend you contact that organization first.

You can find contact information for many support companies and individuals in the file
‘etc/SERVICE’ in the GNU Emacs distribution.

Otherwise, send bug reports for 1d to https://support.codesourcery.com/GNUToolchain/.

The fundamental principle of reporting bugs usefully is this: report all the facts. If you are
not sure whether to state a fact or leave it out, state it!

Often people omit facts because they think they know what causes the problem and assume
that some details do not matter. Thus, you might assume that the name of a symbol you
use in an example does not matter. Well, probably it does not, but one cannot be sure.
Perhaps the bug is a stray memory reference which happens to fetch from the location
where that name is stored in memory; perhaps, if the name were different, the contents of
that location would fool the linker into doing the right thing despite the bug. Play it safe
and give a specific, complete example. That is the easiest thing for you to do, and the most
helpful.

Keep in mind that the purpose of a bug report is to enable us to fix the bug if it is new to
us. Therefore, always write your bug reports on the assumption that the bug has not been
reported previously.

Sometimes people give a few sketchy facts and ask, “Does this ring a bell?” This cannot
help us fix a bug, so it is basically useless. We respond by asking for enough details to
enable us to investigate. You might as well expedite matters by sending them to begin
with.

To enable us to fix the bug, you should include all these things:

https://support.codesourcery.com/GNUToolchain/

102

The GNU linker

The version of 1d. 1d announces it if you start it with the ‘--version’ argument.

Without this, we will not know whether there is any point in looking for the bug in the
current version of 1d.

Any patches you may have applied to the 1d source, including any patches made to
the BFD library.

The type of machine you are using, and the operating system name and version number.
What compiler (and its version) was used to compile 1d—e.g. “gcc-2.7".

The command arguments you gave the linker to link your example and observe the
bug. To guarantee you will not omit something important, list them all. A copy of the
Makefile (or the output from make) is sufficient.

If we were to try to guess the arguments, we would probably guess wrong and then we
might not encounter the bug.

A complete input file, or set of input files, that will reproduce the bug. It is generally
most helpful to send the actual object files provided that they are reasonably small.
Say no more than 10K. For bigger files you can either make them available by FTP or
HTTP or else state that you are willing to send the object file(s) to whomever requests
them. (Note - your email will be going to a mailing list, so we do not want to clog it
up with large attachments). But small attachments are best.

If the source files were assembled using gas or compiled using gcc, then it may be OK
to send the source files rather than the object files. In this case, be sure to say exactly
what version of gas or gcc was used to produce the object files. Also say how gas or
gcc were configured.

A description of what behavior you observe that you believe is incorrect. For example,
“It gets a fatal signal.”

Of course, if the bug is that 1d gets a fatal signal, then we will certainly notice it. But
if the bug is incorrect output, we might not notice unless it is glaringly wrong. You
might as well not give us a chance to make a mistake.

Even if the problem you experience is a fatal signal, you should still say so explicitly.
Suppose something strange is going on, such as, your copy of 1d is out of sync, or you
have encountered a bug in the C library on your system. (This has happened!) Your
copy might crash and ours would not. If you told us to expect a crash, then when ours
fails to crash, we would know that the bug was not happening for us. If you had not
told us to expect a crash, then we would not be able to draw any conclusion from our
observations.

If you wish to suggest changes to the 1d source, send us context diffs, as generated by
diff with the ‘-u’, ‘-c’, or ‘-p’ option. Always send diffs from the old file to the new
file. If you even discuss something in the 1d source, refer to it by context, not by line
number.

The line numbers in our development sources will not match those in your sources.
Your line numbers would convey no useful information to us.

Here are some things that are not necessary:

A description of the envelope of the bug.

Often people who encounter a bug spend a lot of time investigating which changes to
the input file will make the bug go away and which changes will not affect it.

Chapter 6: Reporting Bugs 103

This is often time consuming and not very useful, because the way we will find the
bug is by running a single example under the debugger with breakpoints, not by pure
deduction from a series of examples. We recommend that you save your time for
something else.

Of course, if you can find a simpler example to report instead of the original one, that
is a convenience for us. Errors in the output will be easier to spot, running under the
debugger will take less time, and so on.

However, simplification is not vital; if you do not want to do this, report the bug
anyway and send us the entire test case you used.

e A patch for the bug.

A patch for the bug does help us if it is a good one. But do not omit the necessary
information, such as the test case, on the assumption that a patch is all we need. We
might see problems with your patch and decide to fix the problem another way, or we
might not understand it at all.

Sometimes with a program as complicated as 1d it is very hard to construct an example
that will make the program follow a certain path through the code. If you do not send
us the example, we will not be able to construct one, so we will not be able to verify
that the bug is fixed.

And if we cannot understand what bug you are trying to fix, or why your patch should
be an improvement, we will not install it. A test case will help us to understand.

e A guess about what the bug is or what it depends on.

Such guesses are usually wrong. Even we cannot guess right about such things without
first using the debugger to find the facts.

Appendix A: MRI Compatible Script Files 105

Appendix A MRI Compatible Script Files

To aid users making the transition to GNU 1d from the MRI linker, 1d can use MRI com-
patible linker scripts as an alternative to the more general-purpose linker scripting language
described in Chapter 3 [Scripts|, page 39. MRI compatible linker scripts have a much sim-
pler command set than the scripting language otherwise used with 1d. GNU 1d supports
the most commonly used MRI linker commands; these commands are described here.

In general, MRI scripts aren’t of much use with the a.out object file format, since it only
has three sections and MRI scripts lack some features to make use of them.

You can specify a file containing an MRI-compatible script using the ‘-c’ command-line
option.

Fach command in an MRI-compatible script occupies its own line; each command line starts
with the keyword that identifies the command (though blank lines are also allowed for
punctuation). If a line of an MRI-compatible script begins with an unrecognized keyword,
1d issues a warning message, but continues processing the script.

Lines beginning with ‘*’ are comments.

You can write these commands using all upper-case letters, or all lower case; for example,
‘chip’ is the same as ‘CHIP’. The following list shows only the upper-case form of each
command.

ABSOLUTE secname

ABSOLUTE secname, secname, ... Secname
Normally, 1d includes in the output file all sections from all the input files.
However, in an MRI-compatible script, you can use the ABSOLUTE command
to restrict the sections that will be present in your output program. If the
ABSOLUTE command is used at all in a script, then only the sections named
explicitly in ABSOLUTE commands will appear in the linker output. You can
still use other input sections (whatever you select on the command line, or
using LOAD) to resolve addresses in the output file.

ALTAS out-secname, in—-secname
Use this command to place the data from input section in-secname in a section
called out-secname in the linker output file.

in-secname may be an integer.

ALIGN secname = expression
Align the section called secname to expression. The expression should be a
power of two.

BASE expression
Use the value of expression as the lowest address (other than absolute addresses)
in the output file.

CHIP expression
CHIP expression, expression
This command does nothing; it is accepted only for compatibility.

END This command does nothing whatever; it’s only accepted for compatibility.

106 The GNU linker

FORMAT output-format
Similar to the OUTPUT_FORMAT command in the more general linker language,
but restricted to one of these output formats:

1. S-records, if output-format is ‘S’
2. IEEE, if output-format is ‘IEEE’
3. COFF (the ‘coff-m68k’ variant in BFD), if output-format is ‘COFF’

LIST anything. ..
Print (to the standard output file) a link map, as produced by the 1d command-
line option ‘-M’.
The keyword LIST may be followed by anything on the same line, with no
change in its effect.

LOAD filename

LOAD filename, filename, ... filename
Include one or more object file filename in the link; this has the same effect as
specifying filename directly on the 1d command line.

NAME output-name
output-name is the name for the program produced by 1d; the MRI-compatible
command NAME is equivalent to the command-line option ‘-0’ or the general
script language command OUTPUT.

ORDER secname, secname, ... secname

ORDER secname secname secname
Normally, 1d orders the sections in its output file in the order in which they
first appear in the input files. In an MRI-compatible script, you can override
this ordering with the ORDER command. The sections you list with ORDER will
appear first in your output file, in the order specified.

PUBLIC name=expression
PUBLIC name, expression
PUBLIC name expression

Supply a value (expression) for external symbol name used in the linker input
files.

SECT secname, expression

SECT secname=expression

SECT secname expression
You can use any of these three forms of the SECT command to specify the
start address (expression) for section secname. If you have more than one SECT
statement for the same secname, only the first sets the start address.

Appendix B: GNU Free Documentation License 107

Appendix B GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright (©) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

http://fsf.org/

108

2.

The GNU linker

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain AScIil without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

VERBATIM COPYING

Appendix B: GNU Free Documentation License 109

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.
3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,

110

O

N.

0.

The GNU linker

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

State on the Title page the name of the publisher of the Modified Version, as the
publisher.

Preserve all the copyright notices of the Document.

Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

Include an unaltered copy of this License.

Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

Appendix B: GNU Free Documentation License 111

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

112

7.

The GNU linker

AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

Appendix B: GNU Free Documentation License 113

10.

11.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

http://www.gnu.org/copyleft/

114 The GNU linker

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.
If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . . Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.
If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

LD Index

LD Index

--accept-unknown-input-arch................

—--add-needed .

——add-stdcall-aliasc.ciiiiiennn..
--allow-multiple-definition................
--allow-shlib-undefined.....................
——architecture=arch

—--as-needed ..

——audit AUDITLIBciiiuiiinniiinninnnn.

--auxiliary=name

—-bank-window

--bss-plt.....
--build-id....

--build-id=stylecoiiiiiiiiii,
--check-sections.............................
--copy-dt-needed-entries

-—cref

--default-imported-symver
--default-script=script
--default-symver.............................
-—-defsym=symbol=exp.........................
--demangle[=stylel

--depaudit AUDITLIB

--disable-auto-image-base
--disable-auto-import.......................
--disable-long-section-names...............
--disable-new-dtags
--disable-runtime-pseudo-reloc.............
--disable-stdcall-fixup.....................

--discard-all

--dll-search-prefix.........................

--dotsyms.....

—--dsbt-index .
--dsbt-size ..

--dynamic-linker=file.......................
--dynamic-list-cpp-new......................
--dynamic-list-cpp-typeinfo................
--dynamic-list-data.........................
--dynamic-list=dynamic-list-file

--dynamicbase

——eh-frame-hdr...........

-—-emit-relocs

-—emit-stack-syms................

-—emit-stub-syms 85, 86,

--enable-auto-image-base

115

—-enable-auto-import................. 32

69 --enable-extra-pe-debug..................... 35
--enable-long-section-names................ 29
—-enable-new-dtagsoiii. 27
--enable-runtime-pseudo-reloc.............. 34

14 —--enable-stdcall-fixup...................... 29
14 ——entry=entry 5
14 --error-poison-system-directories......... 28
29 --error-unresolved-symbols 26
19 --exclude-all-symbols....................... 30
19 ——exclude-libs..................l 6
4 --exclude-modules-for-implib................ 6
14 ——exclude-symbols.................oiiiina... 30
4 --export-all-symbols........................ 30
——export-dynamic................... ... 6

7 --extra-overlay-stubs.................... ... 87
36 -—fatal-warnings............... 17
29 --file-alignment............................. 30
81 -—filter=namel 7
85 ——fix-armll76 82
28 --fix-cortex-a8.............. 80, 83
28 ——fix-vdbx. 81
16 --fix-v4bx-interworking............. 81
16 ——force-dynamic.............l 10
16 -—force-exe-suffix........................ 17
19 -—forceinteg.............. ...l 35
11 -—format=format 5
19 ——format=version 88
17 —-gc-sectionsl 18
17 SoEOt L 36
5 ——got=type ... 83
32 ——gpsize=valuecoiiiiiiiiiiiiia 7
34 —-hash-size=number 27
29 --hash-style=style 28
27 —=heap ... 31
34 help . 18
29 --image-base.........................LL 31
12 ——insn32 ... 36, 84
12 --just-symbols=file......................... 11
29 cKA1L-AE . e 31
32 --large-address-aware................ ... 31
86 --ld-generated-unwind-info................. 27
36 --leading-underscore........................ 30
36 --library-path=dir 8
17 --library=namespeciiiiaan 8
16 —-local-store=1lo:hic.ooouienin.. 87
16 --major-image-version....................... 31
16 —-Major-0S-Version 31
15 --major-subsystem-version 31
35 --merge-exidx-entries....................... 80
27 --minor-image-version....................... 31
10 —-minor-os-version.......................... 31
88 --minor-subsystem-version.................. 31
87 --mri-script=MRI-cmdfile 5
32 --multi-subspace............... ...l 83

116 The GNU linker

STOMAGIC. ... 10 --relocatable................... 10
--no-accept-unknown-input-arch............. 14 --retain-symbols-file=filename 21
--no-add-needed..................... ... 14 —=SCTipt=sSCriptccoiuiuuiiiiiiiinnn. 11
--no-allow-shlib-undefined................. 19 --sdata-got ...l 85
--no-as-needed............. ...l 14 --section-alignment 35
--mo-bind......... ... o o ool 35 --section-start=sectionname=org........... 23
--no-check-sections 16 --secure-plt ...l 85
--no-copy-dt-needed-entries................ 16 —=SOTT=COMMOIL\t vtttttttttteeeeennennn 22
--no-define-common 17 --sort-section=alignment 23
--no-demangleiiiiiii., 17 --sort-section=name......................... 23
——no-dotSYmS 86 --split-by-file.......... 23
--no-enum-size-warning...................... 82 —-split-by-reloc...........coiiiiiiiiii.. 23
—-no-export-dynamicl 6 —ostack. ... 35
--no-fatal-warnings 17 --stack-analysis................. 87
—-no-fix-armll76............... 82 —mstats ... 23
--no-fix-cortex-a8....................... 80, 83 —-strip-all o 11
--no-gc-sections.............. ...l 18 --strip-debug............ ...l 11
——no-insn32........l 36, 84 --stub-group-size................l 86
--no-isolation.............l 35 —--stub-group-size=N..................... 82, 83
——NO0-KEepP—MeMOTY.......ovvviiiiiiinnnnennn.. 18 —=suUbSyStem 35
--no-leading-underscore..................... 30 —-support-old-code, 80
--no-merge-exidx-entries................ 36, 80 —--sysroot=directory 23
—-no-multi-toc...........l 87 -—target-help.................... ...l 18
—=NO=OMAGIC .t 10 ——targetl-abs.............l 81
--no-opd-optimize............ ... 86 ——targetl-rel i 81
——NO-0VeTrlaysS ...t 87 -—target2=type............ 81
--no-poison-system-directories............. 28 -—thumb-entry=entry 81
--no-print-gc-sections...................... 18 TTETACE L 11
SNO-Telax ..o 20 --trace-symbol=symbol....................... 12
—-mo-seh......... . 35 -—traditional-format........................ 23
--no-tls-optimize........................ 85, 86 —-tsaware. 35
--no-toc-optimize..............l 86 --undefined=symbol 11
—-no-trampoline................ 36 -—unique[=SECTION]cooviinn... 12
--no-undefined............ ...l 19 --unresolved-symbols 24
--no-undefined-version...................... 19 —-use-blx. ... 81
--no-warn-mismatchol 19 --use-nul-prefixed-import-tables.......... 81
--no-warn-search-mismatch 20 --verbose[=NUMBER] 24
--no-wchar-size-warning..................... 82 —-version.........iioiiii 12
--no-whole-archive 20 --version-script=version-scriptfile....... 24
--noinhibit-exec............ 20 --vipll-denorm-fix 82
—--non-overlapping-opd....................... 86 --warn-alternate-em......................... 26
STIXCOMPAL . 35 “TWATN=COMMOTL . . oo ot tttteeeeeeeeeeaaaaea.. .. 24
--oformat=output-format 20 --warn-constructors......................... 26
—-omagic. ... 10 --warn-multiple-gpiiiiiia, 26
——out-implib..........o 32 S WATTIOIICE .. evvve 26
—-output-defl 32 --warn-section-align........................ 26
——output=output 10 --warn-shared-textrel....................... 26
--pic-executable............. L 20 --warn-unresolved-symbols 26
—-pilc-veneero 82 ——wdmdriver ... 35
——plugin........ 87 --whole-archive.............................. 26
—-print-gc-sections 18 ——wrap=symbol 27
—oPrINt-MAP. .. 9 SAarch ... 4
--print-output-format....................... 18 —akeyword ... 4
--reduce-memory-overheads 28 -—assert keywordl 15
SorelaAX e 20 -b format i 5
‘——relax’ on i960........... oL 80 “Bdynamic....... ... 15
--relax on PowerPC........................... 85 “Bgroup 15

‘——relax’ on Xtensacooueiiinn... 95 -Bshareablettt 22

LD Index

-Bstatic....... ... i 15
“BSymbolic. 15
-Bsymbolic-functions........................ 15
—c MRI-cmdfilecciiiiiiiiiiinnann. 5
—call_sharedo, 15
SA 5
S 5
SADL 15
SAD . 5
-dT script........l 11
T 15
SR 6
T@ eNLIY .« 5
SEB . 7
SEL 7
—fname 7
“Fname 7
-fini=name il 7
T 7
“Gvalue ... 7
“hname ... 8
T 8
SIfile o 17
-init=name o ool 8
SLdir 8
-l namespec................. i 8
P 9
-memulation.......... ...l 9
“Map=mapfilec.c.uiiiiiiiiii 18
I 10
SN 10
-non_shared 15
-nostdlib...... oo 20
“0evel . 10
—ooutpUt ... 10
P AUDITLIBoiiiiiiiiii it 5
SPie . 20
S [P 10
SAMAZIC 20
L 25 20
e 10
SR file ..o 11
—rpath-link=dir............ ..., 21
—rpath=dir 21
S 11
T 11
—shared............ il 22
—SONAME=NAME . . v eeeeeeiiiiiiiiiiiiinnnns 8
—static.. ..o 15
2 11
ST script ..o 11
“TbSS=0Tg v 23
-Tdata=orgcooiiiiiii 23
-Ttext-segment=orgc.ccooeennn. 24
“TtexXt=orgo 23
“U Symbol ... 11
SUL . 12
TV 12

117
SV e 12
R e e e e 12
R 12
=Ypatho o 12
Sy Symbol ... 12
—zdefs .. 19
—zkeyword......... i oo 12
—zmuldefs 19
.. 70
JDISCARD/ . oo 58
phdr 60
=FI11eXP .o 61
>
SIEGIOM .o vi it 60
[COMMON] ..ot 55
A
ABSOLUTE (MRI).......ooviiiiiiiiiaaiiin, 105
absolute and relocatable symbols............... 73
absolute expressionscc.iiiiiian. 73
ABSOLUTE(EXP) « vt vttt et 74
ADDR(SECTION) .\ vvv i 74
address, SeCtion.iiii 51
ALTAS (MRI) ... 105
ALIGN (MRI) ..o 105
align expression oo 75
align location counter.......................... 75
ALIGN(Align) «.vveeeei i 75
ALIGN(exp,align) «..ovvinuinininaaann.. 75
ALIGN(section_align)cccouuenn. 60
aligned common symbols 95
ALIGNOF(section)ocuuiiiiiiiniannnnn. 75
allocating memory............ 62
architecture o 47
architectures............ ... il 4
archive files, from cmd line...................... 8
archive search path in linker script............. 42
arithmetic.......... . o i 69
arithmetic operators........................... 72

ARM interworking support 80

118

ARM1176 erratum workaround 82
AS_NEEDED(Fil€S) «''viieeeeeaaeaaaaaaaannns 42
ASSERT ... 46
assertion in linker script 46
assignment in scripts o oo 47
AT(ImAa) oot 59
AT>Ima_Tegionouuiiin i 59
automatic data imports........................ 91

B

back end 97
BASE (MRI) ..ot 105
BES . o 81
BFD canonical format.................. 98
BFD requirements..............o oo 97
big-endian objectsol 7
binary input format............. oL 5
BLOCK(EXP) «viovii e 75
bug criteria....... o i 101
bug reports...... 101
bugsinld............. ... 101
BYTE(expression)cccuuiuuueeennnn... 56

C

C++ constructors, arranging in link............. 57
CHIP (MRI) ..oviiii e 105
COLLECT_NO_DEMANGLEo, 37
combining symbols, warnings on............... 24
command files..........l 39
command line o i 3
common allocation.......................... 5, 17
common allocation in linker script 46
common symbol placement 55
COMMONPAGESTIZEt 69
compatibility, MRI o 5
CONSTANT ..o s 69
constants in linker scripts.............. 69
constraints on output sections 60
constructors. 12
CONSTRUCTORS . .ottt 57
constructors, arranging in link 57
Cortex-A8 erratum workaround 80, 83
crash of linker......... 101
CREATE_OBJECT_SYMBOLScovniiiinnannn 57
creating a DEF file......o L 91
cross reference table oL 16
cross references......... ... oot 46
current output location........................ 70

data. ... 56

DATA_SEGMENT_ALIGN (maxpagesize,
commonpagesize) ..., 75

DATA_SEGMENT_END(exp)ooviuuinnnnn.. 76

DATA_SEGMENT_RELRO_END (offset, exp) 76

The GNU linker

ADX o 23
DEF files, creating............. 32
default emulation.............. 37
default input format................., 37
DEFINED(Symbol)ovuuniiiiieiiiieannnn 76
deleting local symbols 12
demangling, default............ 37
demangling, from command line 17
direct linking toadll......... 92
discarding sections................ o il 58
discontinuous memoryc.oiii... 62
DLLs, creating.......... ... oo oL 30, 32
DLLs, linking to.........o o it 32
Aot . 70
dot inside sections........... ool 70
dot outside sections........... ... 71
dynamic linker, from command line............ 17
dynamic symbol table............ 6

E

ELF program headers 64
emulation i 9
emulation, default L. 37
END (MRI) ..o 105
endianness. 7
entry point......... ... oo 41
entry point, from command line................. 5
entry point, thumb 81
ENTRY (Symbol)ouvinniiiiiiiiieaennnn. 41
error on valid input........... oL 101
example of linker script........... 40
exporting DLL symbols........... 88
expression evaluation order 72
expression sections.............o oL 73
expression, absolute 74
EXPIESSIONS . ot ittt 69
EXTERN ... 46

F

fatal signal oL 101
file name wildcard patterns.................... 53
FILEHDR i 65
filename symbols 57
fill pattern, entire section...................... 61
FILL(expression)ccooeeuueenn... 56
finalization function 7
first input file........ ... o 43
first instruction.......o oo 41
FIX_ VABX .o 81
FIX_V4BX_INTERWORKING 81
FORCE_COMMON_ALLOCATION.........c.covuvinnn. 46
forcing input section alignment 60
forcing output section alignment 60
forcing the creation of dynamic sections........ 10
FORMAT (MRI) .. .ooviii e 105
functions in expressions.................. ... 74

LD Index

G

garbage collection............. 18, 55
generating optimized output................... 10
GNU linker. ... 1
GNUTARGETo e 37
GROUP(F1l@S) ¢ttt 42
grouping input files............. 42
groups of archives 14

H

H8/300 Supportoovvviiiiiiiiii 79
header size oo i 7
heapsize........ ..o i 31
help. ..o 18
holes ... i 70
holes, filling o i 56
HPPA multiple sub-space stubs................ 83
HPPA stub grouping 83

I

1960 SUPPOrt. ..ot 79
image base ..o 31
implicit linker scripts..........o il 77
import libraries........ ool 88
INCLUDE filenamec.uuiuuuuuuunnnnnnn 41
including a linker script............ 41
including an entire archive..................... 26
incremental linko ool 8
INHIBIT_COMMON_ALLOCATION 46
initialization function.......... 8
initialized data in ROM........................ 59
input file format in linker script................ 43
input filename symbols 57
input files in linker scripts, 42
input files, displaying............ 11
input format............ .. i 5
input object files in linker scripts 42
input section alignment........................ 60
input section basics............... .o 52
input section wildcards 53
input sections 52
INPUT(£I1€S) ¢ vvvittttttte e 42
INSERT ..ottt e 46
insert user script into default script............ 46
integer notationo 69
integer suffixes....... oL 69
internal object-file format........... 98
invalid input o oo 101

K

119
L
L S 63
lazy evaluation 72
1d bugs, reporting ... 101
LD_FEATURE(String)ccouuueuuuennn... 47
LDEMULATION . ..ottt e 37
len =. . 63
LENGTH = . .o e e 63
LENGTH(memory)oovvuiiiiiiiiiiaan. 76
library search path in linker script 42
linkmap ... 9
link-time runtime library search path 21
linker crash......... i il 101
linker script concepts............ccoiiiii. 39
linker script examplel 40
linker script file commands..................... 41
linker script format.............. 40
linker script input object files.................. 42
linker script simple commands 41
linker scripts ... 39
LIST (MRI) c.oviiii e 106
little-endian objects....... it 7
LOAD (MRI) «oovei i 106
load address. ...t 59
LOADADDR(SECtION) «.vvvvveiiii i 76
loading, preventing 59
local symbols, deleting......................... 12
location counter oo i 70
LONG(expression)ccoieeieen... 56
M
M and K integer suffixes............ 69
M68HC11 and 68HC12 support................. 80
machine architecture........................... 47
machine dependencies 79
mapping input sections to output sections...... 52
MK 76
MAXPAGESIZE 69
MEMORY ..ottt 62
memory region attributes.............., 63
MEeMOTy TeGIONS . ..ottt 62
memory regions and sections................... 60
IMEMOTY USAZEC « « « « v v vvee e e e tiiiee e 18
MIN . 76
MIPS microMIPS instruction choice selection .. 84
Motorola 68K GOT generation 83
MRI compatibility............................ 105
MSP430 extra sections.c.ovvuee... 84
N
NAME (MRI) ..oviiii e 106
name, section........... ... 51
DAINIES .« o v vttt e 69
naming the output file......... 10
NEXT(EXP) - e 76

NMAGIC ..o 10

120

NO_ENUM_SIZE_WARNING 82
NO_WCHAR_SIZE_WARNING 82
NOCROSSREFS(sections)coouvviiiennn... 46
NOLOAD ..o e 59
not enough room for program headers.......... 77

O T 63
objdump —i..... 97
object file management 97
object files. 3
object formats available........................ 97
object size. ... 7
OMAGIC .o 10
ONLY_TIF_RO. ... e 60
ONLY _TIF _RW. ...t 60
opening object files......... ... o ool 97
operators for arithmetic........................ 72
OPLIONS . . v 3
ORDER (MRI)uviiieeeeeiie 106
O Sttt 63
ORIGIN = . i e e e 63
ORIGIN(MEMOTY) o ovvei i T
orphan 70
output file after errors......................... 20
output file format in linker script 43
output file name in linker script................ 42
output format oo 18
output section alignment 60
output section attributes....................... 58
output section data............ oL 56
OQUTPUT (filename)oueeuuiennunnnnnnn. 42
QUTPUT_ARCH(bfdarch)c.couuuueeoon.. 47
OUTPUT_FORMAT (bfdname)ccouuuun... 43
OVERLAY . .o 61
overlays 61

P

partial linko o 10
PE import table prefixing...................... 81
13:10): 1 F 64, 65
PIC_.VENEERo i 82
position independent executables............... 20
PowerPC ELF32 options....................... 85
PowerPC GOT ... 85
PowerPC long branches..................... ... 85
PowerPC PLT oo 85
PowerPC stub symbols 85
PowerPC TLS optimization.................... 85
PowerPC64 dot symbols....................... 86
PowerPC64 ELF64 options 86
PowerPC64 multi-TOC 87
PowerPC64 OPD optimization................. 86
PowerPC64 OPD spacing...................... 86
PowerPC64 stub grouping 86

PowerPC64 stub symbols...................... 86

The GNU linker

PowerPC64 TLS optimization.................. 86
PowerPC64 TOC optimization................. 86
precedence in exXpressions...................... 72
prevent unnecessary loading 59
program headers........... i 64
program headers and sections.................. 60
program headers, not enough room 7
program Segments, 64
PROVIDE ... 48
PROVIDE_HIDDENot 48
PUBLIC (MRI).....oviiiiiiiieaiieann, 106
Q

QUAD (eXpresSSion) «......cevuuuenneannnennnen. 56
quoted symbol names........... 69

R

read-only text o oL 10
read/write from cmd line...................... 10
region alias.......... ... ool 43
TEGION NAIMES . o vv vttt et 43
REGION_ALIAS(alias, region) 43
regions of memory........... i 62
relative expressionsooviiiiiiiii... 73
relaxing addressing modes 20
relaxing on H8/300........................o... 79
relaxing on 1960 oL 80
relaxing on M68HC11 80
relaxing on Xtensa............ooooiiiiiiL. 95
relocatable and absolute symbols............... 73
relocatable output........................... 10
removing sections.............. ... oL 58
reporting bugsin1d.............. 101
requirements for BFD oL 97
retain relocations in final executable 10
retaining specified symbols..................... 21
ROM initialized data 59
round Up eXPressionoeeeeeininieea... 75
round up location counter 75
runtime library nameol 8
runtime library search path.................... 21
runtime pseudo-relocation 92

S

scaled integers........... ool 69
scommon section 55
seript files. ... 11
SCIIPES .« v e 39
search directory, from cmd line.................. 8
search path in linker script..................... 42
SEARCH_DIR(PAth) «...ovvveeeeeeieenn, 42
SECT (MRI) ..\t 106
section address oo il 51
section address in expression................... 4
section alignment............ 75

LD Index

section alignment, warnings on................. 26
section data ... 56
section fill pattern.................... 61
section load address oL 59
section load address in expression.............. 76
section nameoo i i i 51
section name wildcard patterns 53
section size......... .ol i 7
section, assigning to memory region............ 60
section, assigning to program header........... 60
SECTIONS . ..ottt 50
sections, discarding 58
segment origins, cmd line...................... 23
SEGMENT_START (segment, default)............ 77
segments, ELF 64
shared libraries.......... ... oo i 22
SHORT (expression)c..coouueenn... 56
SIZEOF(Section) 7
SIZEOF_HEADERS i 7
small common symbols 55
SORT . 54
SORT_BY_ALIGNMENT 54
SORT_BY_INIT_PRIORITY 54
SORT BY NAME. ... 54
SPU .o 87, 88
SPU ELF options.........ccooiiiiiieiia... 87
SPU extra overlay stubs....................... 87
SPU local store size ..., 87
SPU overlay stub symbols 87
SPU overlays ..o 87
SPU plugins..............oooiiii . 87
SQUAD (expressSion)c.ceuuuuueeennnn.. 56
stack Size. 35
standard Unix system........................... 3
start of execution................ 41
STARTUP(filename)c.euuueenueannn.. 43
strip all symbols.........l 11
strip debugger symbols 11
stripping all but some symbols................. 21
STUB_GROUP_SIZE. ...t 82
SUBALIGN (subsection_align) 60
suffixes for integersi.. 69
symbol defaults................ .. oL 76
symbol definition, scripts 47
symbol names i 69
symbol tracing o oL 12
symbol versions.............. . 66
symbol-only input......... L 11
symbolic constants............................. 69
symbols, from command line................... 17
symbols, relocatable and absolute.............. 73
symbols, retaining selectively 21

synthesizing linker............ L. 20

121
synthesizing on H8/300........................ 79
T
TARGET(bfdname)ououeenueennnnneann.. 43
TARGETT ..o 81
TARGET2 ... 81
text segment origin, cmd line 24
thumb entry point........ 81
TI COFF versionscoviuiiiiiiniienn... 88
traditional format o 23
trampoline generation on M6SHC11............ 80
trampoline generation on M68HC12............ 80
U
unallocated address, next...................... 76
undefined symbol.......... o 11
undefined symbol in linker script............... 46
undefined symbols, warnings on................ 26
uninitialized data placement 55
unspecified memory........... .. .o 56
SAZE .« « v et ettt e e e e e 18
USE BLX .. 81
using a DEF file....... o oL 89
using auto-export functionality 88
Using decorations. ... 91
\%
variables, defining oL 47
verbose[=NUMBER]oooo.... 24
VETSION & . vt 12
VERSION {script text}................oiu.. 66
version script.......... oo i il 66
version script, symbol versions................. 24
versions of symbols......... oL 66
VFP11_DENORM_FIX............ooooiitt. 82
\%\%
warnings, on combining symbols............... 24
warnings, on section alignment................. 26
warnings, on undefined symbols................ 26
weak externals......... o 95
what is this?...... 1
wildcard file name patterns.................... 53
X
Xtensa optionso o il 96
Xtensa ProCeSSOTS .. v v vttt et e, 95

122

The body of this manual is set in
cmrl0 at 10.95pt,
with headings in cmb10 at 10.95pt

and examples in cmtt10 at 10.95pt.

emitil0 at 10.95pt and
cmsl10 at 10.95pt
are used for emphasis.

The GNU linker

	Overview
	Invocation
	Command Line Options
	Options Specific to i386 PE Targets
	Options specific to C6X uClinux targets
	Options specific to Motorola 68HC11 and 68HC12 targets
	Options specific to Motorola 68K target
	Options specific to MIPS targets

	Environment Variables

	Linker Scripts
	Basic Linker Script Concepts
	Linker Script Format
	Simple Linker Script Example
	Simple Linker Script Commands
	Setting the Entry Point
	Commands Dealing with Files
	Commands Dealing with Object File Formats
	Assign alias names to memory regions
	Other Linker Script Commands

	Assigning Values to Symbols
	Simple Assignments
	PROVIDE
	PROVIDE_HIDDEN
	Source Code Reference

	SECTIONS Command
	Output Section Description
	Output Section Name
	Output Section Address
	Input Section Description
	Input Section Basics
	Input Section Wildcard Patterns
	Input Section for Common Symbols
	Input Section and Garbage Collection
	Input Section Example

	Output Section Data
	Output Section Keywords
	Output Section Discarding
	Output Section Attributes
	Output Section Type
	Output Section LMA
	Forced Output Alignment
	Forced Input Alignment
	Output Section Constraint
	Output Section Region
	Output Section Phdr
	Output Section Fill

	Overlay Description

	MEMORY Command
	PHDRS Command
	VERSION Command
	Expressions in Linker Scripts
	Constants
	Symbolic Constants
	Symbol Names
	Orphan Sections
	The Location Counter
	Operators
	Evaluation
	The Section of an Expression
	Builtin Functions

	Implicit Linker Scripts

	Machine Dependent Features
	ld and the H8/300
	ld and the Intel 960 Family
	ld and the Motorola 68HC11 and 68HC12 families
	Linker Relaxation
	Trampoline Generation

	ld and the ARM family
	ld and HPPA 32-bit ELF Support
	ld and the Motorola 68K family
	ld and the MIPS family
	ld and MMIX
	ld and MSP430
	ld and PowerPC 32-bit ELF Support
	ld and PowerPC64 64-bit ELF Support
	ld and SPU ELF Support
	ld's Support for Various TI COFF Versions
	ld and WIN32 (cygwin/mingw)
	ld and Xtensa Processors

	BFD
	How It Works: An Outline of BFD
	Information Loss
	The BFD canonical object-file format

	Reporting Bugs
	Have You Found a Bug?
	How to Report Bugs

	MRI Compatible Script Files
	GNU Free Documentation License
	LD Index

